
Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic Segmentation

Alexander Koenig, Maximilian Schambach, Johannes Otterbach

Merantix Momentum, Berlin, Germany

{firstname.lastname}@merantix.com

Operation Read
Image

Patch
Image

Embed
Tokens

Output
Tokens

Reshape
Tokens

Upsample
Tokens

Segment.

Head

Linear Probe /
Cluster Probe

CRF
Refine

Output
Outputs 1 402 402 402 1 1 1 1 1
Channels 3 3

Height 320 8 1 1 40 320 320 320 320
Width 320 8 1 1 40 320 320 320 320

…

S

CP

DINO

LP

Contrastive
Loss

Cross
Entropy

k-means +
Hungarian

Stop-Gradient

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

Full Paper

Method

Cocostuff Cityscapes Potsdam

Unsupervised
Cluster probe

Supervised
Linear probe

Unsupervised
Cluster probe

Supervised
Linear probe

Unsupervised
Cluster probe

Supervised
Linear probe

Acc mIoU Acc mIoU Acc mIoU Acc mIoU Acc mIoU Acc mIoU

STEGO (theirs) 56.9 28.2 76.1 41.0 73.2 21.0 - - 77.0 - - -
STEGO (ours) X56.9 X28.2 X76.1 X41.1 X73.2 X21.0 89.6 28.0 X77.0 62.6 85.9 74.8
DINO (theirs) 30.5 9.6 66.8 29.4 - - - - - - - -
DINO (ours) †42.4 †13.0 †75.8 ‡44.4 52.6 15.2 ‡91.3 ‡34.9 71.3 54.3 84.5 72.8

Table 2. Validation results of reproducibility study showing accuracy (“Acc”) and mIoU in % for the different evaluation styles and datasets.
Values reported in the original paper [20] are marked “theirs”, and missing ones are denoted with “-”. Our results evaluating the pre-trained
models are marked “STEGO (ours)”. “DINO (ours)” is a re-training of the probes directly on the DINO backbone. Successful reproduction
is denoted with X and a stronger DINO performance than reported in [20] is indicated with † and ‡. All evaluations post-process with CRF.

We use the “actual configuration” retrieved from the pre-
trained models without performing additional hyperparam-
eter optimizations to remain comparable with Hamilton et
al.’s [20] results. Our source code is publicly available2 and
only applies minimal changes to the original code, e.g., for
more extensive logging, which are clearly highlighted.

3.2. Results and Discussion

Tab. 2 displays the results of our reproducibility study
across all three benchmarking datasets. First, we show that
using the pre-trained STEGO models provided by the au-
thors, we are able to reproduce the results from the pa-
per (highlighted with X), which validates our evaluation
pipeline. Moreover, we paint a more comprehensive picture
by reporting missing metrics for the Cityscapes and Pots-
dam datasets.

Second, we directly evaluate the features produced by
the DINO backbone by re-training the cluster and linear
probe on the backbone while fixing all other training set-
tings. We find that the DINO baseline results are consis-
tently better than those provided in the paper [20] (high-
lighted with †). This is surprising as we use the evalua-
tion pipeline provided by the authors and do not introduce
changes that could influence the training performance.

Notably, for linear probe-style evaluation, the DINO
baseline performs approximately on par with the STEGO
approach, sometimes even outperforming STEGO (high-
lighted with ‡). This result means that the features produced
by DINO and the STEGO segmentation head exhibit similar
linear separability. DINO demonstrates a remarkable abil-
ity to provide semantically meaningful features and gener-
alize to different datasets despite being pre-trained solely
on ImageNet [33], while Hamilton et al. [20] fine-tuned the
segmentation head on the respective datasets. DINO’s per-
formance is particularly noteworthy, given the significant

2
github.com/merantix-momentum/stego-studies

domain shifts between ImageNet and Potsdam’s aerial im-
agery and ego-camera footage from Cityscapes.

However, as shown in Tab. 2, the STEGO embeddings
are better suited for the unsupervised cluster probe task than
the raw DINO features. Hamilton et al. argue that “[d]ue to
the feature distillation process, STEGO’s segmentation fea-
tures tend to form clear clusters” (page 6, [20]). While more
“distinct clusters” (page 1, [20]) could explain STEGO’s su-
perior k-means clustering performance, there might be ad-
ditional possible explanations.

First, STEGO can adapt to a domain shift to the new data
distribution since it includes a trainable segmentation head.
It needs to be clarified what the contribution of the STEGO
loss for adapting to new datasets really is, as opposed to the
DINO pre-training objective, which could also be used to
fine-tune the backbone. For instance, can one fine-tune the
ViT backbone – either entirely, using adapters [21], or addi-
tional linear heads – using the DINO loss on a new dataset
and obtain a performance competitive with STEGO? As
Caron et al. [9] show, DINO provides semantically mean-
ingful representations. The DINO loss is better understood
due to its pervasion in the community and involves less hy-
perparameter tuning.

Second, STEGO’s dimensionality reduction from DViT
to DSTEGO (a factor of ⇡ 8 for Cocostuff and Cityscapes)
could in itself be a reason for a higher unsupervised cluster-
ing performance. The k-means algorithm used for cluster-
ing minimizes the sum of squared distances between each
data point and its cluster centroid. Due to the curse of di-
mensionality, distances between data points in higher di-
mensions become exponentially larger and more uniform.
This observation also holds for the cosine distance-based
variant of k-means applied in the STEGO paper. Less
significant distances make it harder to identify clusters in
higher dimensional spaces. Hence, it could be that STEGO
preserves the semantics of DINO features while projecting
them into a lower-dimensional space where k-means per-

1. Introduction

2. STEGO Architecture & Training Strategy

Figure 1: Architecture of STEGO validation pipeline.

Table 1: Validation results of reproducibility study.

3. Re-establishing Baselines

Figure 2: Cumulative explained variance of principal
components of DINO features.

4. Disentangling STEGO’s Working Principles

Figure 3: Validation mIoU of CP and LP after dimensionality reduction across projection dimensions.

- Problem: labeled data is scarce, but unlabeled data is
abundant 

- Self-supervised learning recently demonstrated
impressive results on unlabeled datasets 

- For example, STEGO [1] is an algorithm for
unsupervised semantic segmentation 

- To apply the STEGO algorithm safely in real-world
settings, it’s crucial to understand its working
mechanisms

- STEGO builds on the DINO [2] pre-trained Vision
Transformer, see Figure 1 

- STEGO’s segmentation head S non-linearly projects
DINO features into lower-dimensional space,
“distilling” DINO feature correspondences

- S is trained using a self-supervised contrastive loss
that involves 6 hyper-parameters 

- Unsupervised cluster probe (CP) maps STEGO
features to ontologies using k-Means and Hungarian
Matching algorithm. Labels are only needed for
matching clusters to human-interpretable ontologies.

- Supervised linear probe (LP) evaluates feature quality

- Table 1 shows results of our reproducibility study

- Evaluating pre-trained models in “STEGO (ours)”
gives same results as “STEGO (theirs)”

- However, training unsupervised cluster probe on raw
DINO features, under “DINO (ours)”, performs better
than suggested in STEGO paper

- Also, training supervised linear probe on raw DINO
features, under “DINO (ours)”, performs approximately
equal or greater than on segm. head features

✓

†

† ‡

- Segmentation head S reduces dimensionality from
 to for Cocostuff. The k-Means

algorithm converges better in lower dimensions due to
the curse of dimensionality.

- Hypothesis: STEGO is a semantics-preserving
dimensionality reduction technique specifically suited for
k-Means style clustering algorithms

- Steep cumulative explained curve in Figure 2 indicates
great potential for dimensionality reduction techniques on
ViT features

DViT = 768 DSTEGO = 90

[1] Hamilton et al.
“Unsupervised
semantic
segmentation by
distilling feature
correspondences”,
ICLR 22.

[2] Caron et al.
“Emerging
properties in self-
supervised vision
transformers”,
ICCV 21.

References5. Conclusion

- Figure 3 supervised linear probe: STEGO is a
dimensionality reduction technique, since it can
robustly down-project embedding dimension by
a factor of ~8 with little loss in LP performance

- Figure 3 unsupervised cluster probe: STEGO
outperforms PCA and Random Projection (RP)
dim. reduction baselines

- Reason 1: non-linear projection forms more
distinct clusters (see performance at
unreduced dimension)

- Reason 2: while there is less information
content for lower dimensions, lower
dimensions favor k-Means convergence

DViT

- Vanilla DINO is highly performant

- STEGO is a semantics-preserving
dimensionality reduction technique,
outperforming PCA and RP baselines

- Future Work 1: STEGO’s segmentation
head can adapt to new data distribution
after training using a contrastive loss. Can
the segmentation head be trained using
the simpler DINO loss, too?

- Future Work 2: What is the impact of using
clustering algorithms specifically designed
for high-dimensional embedding spaces?

Operation Read
Image

Patch
Image

Embed
Tokens

Output
Tokens

Reshape
Tokens

Upsample
Tokens

Segment.

Head

Linear Probe /
Cluster Probe

CRF
Refine

Output
Outputs 1 402 402 402 1 1 1 1 1
Channels 3 3

Height 320 8 1 1 40 320 320 320 320
Width 320 8 1 1 40 320 320 320 320

…

S

CP

DINO

LP

Contrastive
Loss

Cross
Entropy

k-means +
Hungarian

Stop-Gradient

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#*****

CVPR
#*****

CVPR 2023 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ducing and extending its experimental validation to ensure
its well-informed usage and motivate further development.
Particularly, our contributions are:

1. A study reproducing some main results, highlighting
a stronger zero-shot performance of DINO than sug-
gested in the STEGO paper, and reporting missing
STEGO metrics to paint a more comprehensive picture
of its performance.

2. Ablations on STEGO’s embedding dimension and its
effect on downstream task-dependent metrics. Com-
parison to other linear dimensionality reduction tech-
niques across three benchmark datasets.

3. A detailed discussion of the STEGO method, disclos-
ing directions for future research.

2. Background

2.1. Related Works

TODO - Alex

2.2. STEGO Architecture

An overview of STEGO’s architecture is given in Fig-
ure 1. The approach uses an ImageNet-pretrained DINO
backbone [8] for feature extraction. Before being fed into
the ViT, an input image x is patched into 8×8 image patches
which are subsequently mapped into a latent representation
using a simple linear layer. A learnable positional encod-
ing is then added to these embedded patches which are also
called tokens. These tokens are then processed by multi-
ple transformer layers. Finally, the ViT’s output tokens are
reshaped into a DViT-dimensional image-like feature map
m. The STEGO architecture adds three main modules on
top of DINO. First, am optional bilinear upsampling layer is
added to upsample the feature map by a factor of 8 to regain
the original input image resolution. Note that the upsam-
pling is only performed at inference for evaluation but not
during training. Then, an unsupervised segmentation head
projects the DINO features from DViT to DSTEGO dimen-
sions. Here, the dimensionality DViT of the ViT features de-
pends on the choice of the backbone (DViT = 384 for ViT-
Small, 768 for ViT-Base) and the target dimension DSTEGO
is a hyper-parameter. Lastly, a cluster or linear probe is
trained with few labels to assign each pixel a probability of
each of the NC semantic target classes. The linear probes
evaluate the feature quality of the segmentation head’s out-
put. A stop-gradient operation after the segmentation head
ensures that no supervised label information propagates into
the segmentation head. Finally, the output is optionally re-
fined using a Conditional Random Field (CRF) [23]. TODO
DELETE: x fViT fSTEGO DViTDSTEGO Nc

The STEGO segmentation head consists of several lin-
ear layers and a non-linear ReLU [16] activation function as

shown in Figure 2. The segmentation head processes each
feature separately by applying a 1×1 convolution to the fea-
ture map. That is, neighboring features do not influence
each other in this head. Moreover, the module performs
a projection of the DViT-dimensional input vector into a
DSTEGO-dimensional output embedding space. The authors
propose to reduce the channel dimension in the segmenta-
tion head, i.e., DSTEGO < DViT) and specify DSTEGO = 70.

2.3. STEGO Training Strategy

A contrastive loss is used to train the segmentation
head of the STEGO architecture. This self-supervised loss
aims at amplifying the correlation patterns that are already
present in the features produced by the DINO backbone and
making them more consistent across the training dataset. As
noted before, during training, the segmentation head oper-
ates directly on the DINO features without intermediate up-
sampling.

Hamilton et al.’s contrastive framework is based on ViT
token pairs as opposed to image pairs which are commonly
used in the context of contrastive self-supervised training
strategies in computer vision [8,9]). In the STEGO context,
token pairs are defined using the cosine similarity of two
ViT tokens: A pair is considered positive when the cosine
similarity of two tokens exceed a certain threshold other-
wise, they are considered negative. Their contrastive corre-
lation loss is used to train the segmentation head and push
the features of positive token pairs towards alignment, cor-
responding to a cosine similarity of 1, while negative pairs
are pushed towards anti-alignment, corresponding to a co-
sine similarity of –1.

The loss is implemented as follows. First, they assem-
ble a pair of images (x,x0) and obtain the corresponding
DINO feature maps (m,m0) as well as segmentation head
outputs (s, s0). Subsequently, they calculate the cosine sim-
ilarities between all token pairs m and m0 to obtain a fea-
ture correspondence tensor CViT. Analogously, they calcu-
late the correspondence tensor CSTEGO of the segmentation
head outputs (s, s0). Their contrastive correlation loss

Lcorr(x,x
0, b) = �

X

hwij

(CViT,hwij � b)CSTEGO,hwij (1)

pushes an entry in the STEGO feature correspondence ten-
sor CSTEGO towards 1 if the respective entry in CDINO ex-
ceeds the threshold b, which can be interpreted as a form of
negative pressure, in the case of a positive token pair and to-
wards –1 otherwise. The paper mentions several strategies
to stabilize the loss and prevent collapse such as spatial cen-
tering of the correspondence tensor CViT and zero-clamping
of the correspondence tensor CSTEGO.

The choice of image pair (x,x0) contributes towards the
amount of positive and negative learning signal from the
loss function. In total, the loss uses three image pairs: The

2

