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CVPR 2023

- Papers Submitted 9155
- Papers Accepted 2360
- Acceptance Rate 25.78%

- Attendance CVPR 23: 7088 in-person, 3215 virtual

- Attendance CVPR 19: 9375 (pre-CQOVID) -l :

- Companies at CVPR 23: 116, 21200 square feet expo
- Companies at CVPR 19: 181, 41200 square feet expo



https://docs.google.com/file/d/1sgVrD3xLad2KfcMJLtjY9VjYY-l9DLoN/preview
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Disclaimers

- Not my work! Just want to share some “aha” moments
- Hope to convey the paper’'s message
- If you want to deep dive, read the paper




FlexiViT: One Model for All Patch Sizes

Lucas Beyer; Pavel Izmailovy ; Alexander Kolesnikov; Mathilde Caron; Simon Kornblithy
Xiaohua Zhai} Matthias Minderer; Michael Tschannen] Ibrahim Alabdulmohsinj Filip Pavetic}

Google Research




Vision Transformers 107

Vision Transformer (ViT)

MLP

—
Ball Head

ViT-B/16  ViT-B/32 ViT-L/16  ViT-L/32

Transformer Encoder
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* Extra learnable

[class] embedding [ Linear Projection of Flattened Patches
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Source: Dosovitskiy et al. ICLR 2021

CIFAR-10 98.13 97.77 97.86 97.94
CIFAR-100 87.13 86.31 86.35 87.07
ImageNet 77.91 73.38 76.53 71.16

Family of ViT Models

- Problem: need to train one model
for each patch size (expensive,
inflexible, must scale image s.t. 16
or 32 are a factor of resolution)

- Trade-off: small patch size - high
performance, but expensive
compute, and vice versa for large
patch sizes



FlexiViT - Key Ildea

—l
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Algorithm 1 Minimal FlexiViT pseudo-implementation.

1 model = ViT(...)

2 for batch in data:

3 ps = np.random.choice([8, 10, ..., 40, 48])
4 logits = model (batch["images"], (ps, ps))
5 # [...] backprop and optimize as usual

6

7 class ViT (nn.Module) :

8 def __call__(self, image, patchhw):

9 # Patchify, flexibly:

10 w = self.param("w_emb", (32, 32, 3, d))
11 b = self.param("b_emb", d)

12 w = resize(w, (*patchhw, 3, d))

13 x = conv(image, w, strides=patchhw) + b
14 # Add flexible position embeddings:

15 pe = self.param("posemb", (7, 7, d))

16 pe = resize(pe, (*x.shape[l:3], d))

17 return TransformerEncoder(...) (x + pe)

Notes: Changes to existing code highlighted via violet background.

- bilinear interpolation to resize patch embedding
weights and positional embeddings



FlexiV/iT - Results

ImageNet21k precision@1 (val)

T I | T T T I
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Inference-time sequence length (patch size)

Figure 3. Standard ViTs are not flexible in patch size. However,
FlexiViT can train them to be flexible without loss of performance.
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Figure 2. FlexiViT results on ImageNet-1k. We train three Flexi-
ViTs based on DeiT III on ImageNet-1k and show their speed-
accuracy tradeoff when evaluated at various patch sizes.

Heuristic: choose smallest patch size that still fits your compute budget ;-)

10



Uncovering the Inner Workings of STEGO for
Safe Unsupervised Semantic Segmentation
Alexander Koenig Maximilian Schambach Johannes Otterbach

Merantix Momentum

{firstname.lastname}@merantix.com
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STEGO Follow-Up: Motivation

- Problem: labeled data is scarce, but unlabeled data is abundant

- Self-supervised learning recently demonstrated impressive results on unlabeled datasets
- STEGO (Hamilton et al., ICLR 2022) does unsupervised semantic segmentation
- To apply STEGO safely in real-world, it’s crucial to understand its working mechanisms

STEGO

Ontology
®mGround ® Sky
®\Water ®Person

mSports
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STEGO = DINO + Clustering

Loss

Cross __| k-means +
Entropy Hungarian

[ ]

D ) O
(—) (C—)
D — DINO — | | e Rl
O —> )
— — CP o=
) _
------------------------------------------ #, Stop-Gradient
Operation Read Patch Embed Output Reshape Upsample Segment. | Linear Probe /| CRF
P Image Image Tokens Tokens Tokens Tokens Head Cluster Probe | Refine

- STEGO builds on DINO (Caron et al., ICCV 2021) pre-trained Vision Transformer

- Segmentation head S projects DINO feats into lower-dimensional space, “distilling” DINO
feature correspondences

- Cluster Probe maps STEGO features to ontologies using k-Means

13



Cluster Probe = SegHead + K-Means + Hungarian

Re p rOd u Ci b”itl_al COCOSTU-H: Linear Probe = SegHead + Lin. Layer + X Entropy

@ Unsupervised Cluster Probe loU [ Supervised Linear Probe loU
50

40
30
20

10

STEGO (theirs) STEGO (ours) DINO (theirs) DINO (ours)
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Unsupervised = SegHead + K-Means + Hungarian

Re p rOd u Ci b”itl_al COCOSTU-H: Linear Probe = SegHead + Lin. Layer + X Entropy

50

@ Unsupervised Cluster Probe loU [ Supervised Linear Probe loU
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STEGO (theirs) STEGO (ours) DINO (theirs) DINO (ours)
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reproduced!
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Unsupervised = SegHead + K-Means + Hungarian

Re p rOd u Ci b”itl_al COCOSTU-H: Linear Probe = SegHead + Lin. Layer + X Entropy

@ Unsupervised Cluster Probe loU [ Supervised Linear Probe loU
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Unsupervised = SegHead + K-Means + Hungarian

Re p rOd u Ci b”itl_al COCOSTU-H: Linear Probe = SegHead + Lin. Layer + X Entropy

@ Unsupervised Cluster Probe loU [ Supervised Linear Probe loU
50

why?

40

30

20

10

STEGO (theirs) STEGO (ours) DINO (theirs) DINO (ours)

\ AN J
Y Y

reproduced! not reproduced!
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STEGO’s Working Mechanisms

Supervised
Linear Probe mloU
N
o

-
o

3 6 12 24 48 96 192 384 768

Embedding Dimension D

Vv STEGO (theirs) Vv  DINO (ours) —— PCA
-®- STEGO (theirs) w/o CRF -®- DINO (ours) w/o CRF RP
—— STEGO

Working Mechanism 1:

STEGO is a dimensionality reduction technique
k-Means converges better in fewer dimensions

18



STEGO’s Working Mechanisms

N DN
o O

Working Mechanism 2:

=%
o

Unsupervised
Cluster Probe mloU
>

&)

3 6 12 24 48 96 192 384|768

Embedding Dimension D

Vv STEGO (theirs) ¥ DINO (ours) —— PCA
-®- STEGO (theirs) w/o CRF -®- DINO (ours) w/o CRF RP
=& STEGO

Segmentation head output forms more distinct
clusters

19



CLIPPO: Image-and-Language Understanding from Pixels Only

Michael Tschannen, Basil Mustafa, Neil Houlsby
Google Research, Brain Team, Ziirich

20



CLIP-Pixels Only (CLIPPO) - Key Idea

/—° CLIP -4\
E Contrastive E
Vision Text
Transformer Transformer
f
!

-

—————————

: ‘\\ 1 ?
1 J A birthday
; . pug wearing a
1
I
1

party hat.

- CLIP (Radford et al. 2021) trains separate image and text encoder



CLIPPO - Results

- CLIPPO approaches BERT performance on GLUE benchmark

- “CLIPPO performs similarly to CLIP-style models (within 1-2%) on the main tasks CLIP was
designed for - image classification and text/image retrieval”

- Good results on VQA despite never trained on that

Answer: surfing Answer: yes

VQAV2 dataset: Classifying CLIPPO feats

22



also see: Lian et al. “Mind the Gap: Understanding the Modality Gap in

C Ll PPO - I\/I O d al i'tg G ap Multi-modal Contrastive Representation Learning”, NeurlPS 2022

" CLIPPO .ﬁ

CLIP" - (gap: 0.731) CLIPPO - (gap: 0.600) CLIPPO 25%C4 - (gap: 0.099) E Contrastive E
0.4 - 0.3
0.2-
0.2 [ Transformer ]
0.1+
0.0 0.0 t ot
—0.24 014 CONV
—0.4- 0.2 h
0.3
I I I I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0:5 0.6 0.7 0.8

‘
Pre-training on text-text pairs with C4 (Colossal /

Clean Crawled Corpus) reduces modality gap

23



CLIPPO - Typographic Attacks

NO LABEL LABELED “IPOD" LABELED “LIBRARY"
T TR A Granny Smith 0.13% Granny Smith 1.14%
| iPod 0.42% iPod 0.08%
Y library 0% library 0%
| pizza 0% pizza 0% pizza 0%
rifle 0% rifle 0% rifle 0%
‘ toaster 0% ‘ toaster 0% ‘ toaster 0%

Source: https://distill.pub/2021/multimodal-neurons/

Typographic attack: “the tendency of CLIP-style models to zero-shot classify an image according to
adversarially injected scene text unrelated to the scene”

CLIPPO Result: “All models are largely able to ignore the typographic attack, and the CLIPPO models are

on par with or better than the counterparts relying on a tokenizer.”



https://distill.pub/2021/multimodal-neurons/

OpenScene: 3D Scene Understanding with Open Vocabularies

Songyou Peng!»23 Kyle Genova! Chiyu “Max” Jiang* Andrea Tagliasacchi'®
Marc Pollefeys? Thomas Funkhouser!
! Google Research 2 ETH Zurich 3 MPI for Intelligent Systems, Tiibingen ~* Waymo LLC  ® Simon Fraser University

pengsongyou.github.io/openscene

25



Traditional (8D) Semantic Segmentation

wall floor M cabinet bed chair M sofa table M door
window [ counter curtain | toilet M sink bathtub W other [ unlabeled

G N
s - 4
N

Traditional Semantic Segmentation

Only train and test on a few common classes

26



OpenScene - Key ldea

sit CBELV/

leather

glass

w

openable

3D Geometry CLIP Text Features RGB Images

(visualize with T-SNE)

1. Co-embed 3D text-image features
2. Reason about properties of 3D points via cosine-similarity

27



OpenScene - Demo



https://docs.google.com/file/d/1yvPQN9q1tQUStyVKKwDDH9Yl9MWYHb7R/preview

Visual Programming: Compositional visual reasoning without training

Tanmay Gupta, Aniruddha Kembhavi
PRIOR @ Allen Institute for Al

httos: //prior.allenai ora/protects/visproc
NECtpses//Prliorsallelldl «+0rg/pRrojects/ V1Sprog

CVPR Award Candidate

29



VisProg

IMAGE
Instruction: Replace the ground
with white snow and the bear
with a white polar bear
0BJ0=Seg( -

image=IMAGE)

0OBJ1=Select(
image=IMAGE,

object=0BJ0, <
query=°‘ground”’)

IMAGE@=Replace(
image=IMAGE, _

object=0BJ]1,
prompt=‘white snow’)

0BJ2=Seg(
image=IMAGE®)

0BJ3=Select(
image=IMAGE®,
object=0B]2,
query=°‘bear”’)

IMAGE1=Replace(
image=IMAGE®,
object=0BJ3,
prompt=‘white polar bear’)

VisProg - a framework that builds CV pipelines from natural language
“‘uses the in-context learning ability of GPT3 to generate python programs”
Each line invokes functions s.a. CV models, openCV or PIL routines, ...

MaskFormer

CLIP ViT

Stable Diff.

30



HandsOff: Labeled Dataset Generation With
No Additional Human Annotations

Austin Xu* Mariya I. Vasileva Achal Dave' Arjun Seshadri
Georgia Institute of Technology Amazon AWS Toyota Research Institute Amazon Style

CVPR Highlight

31



HandsOff - Key ldea

Few labeled images

/ [
AR BoAs
o LB - S <
H HandsOff m Q l.; g
- y 1 (]

Generative Model 6 e m
~==
f Infinite labeled

generated images

Figure 1. The HandsOff framework uses a small number of exist-
ing labeled images and a generative model to produce infinitely
many labeled images.

- Trained on less than 50 labeled images
- GAN inversion for dataset generation

32



HandsOff - GAN Inversion 107

Sampling &

Latent space G ti
p eneration x =G(z), z~N(0, 1)

(a) invert real image into latent space

z*=arg min (G(z), x)
z

Inversion

(b) manipulate the inverted image in
the latent space

x = G(z*+n;) x = G(z*+n,) xrea
Reconstruction& Manipulation
: %
Decrease age Add smile
Figure 1: GAN inversion overview Figure 2: Invert GAN with encoder E, trained by min. rec. los

- “GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model so
that the image can be faithfully reconstructed from the inverted code by the generator”

33

Source: Xia et al. “GAN Inversion: A Survey”, 2022



HandsOff - Details

GAN
inversion

Latent
weW

gl Generator

grabs intermediate layers of StyleGAN2 generator,
up-samples them, forms pixel-wise features

MLP head maps pixel-wise feature to label

(1) Train label generator with existing labeled images

Hypercolumn
representation

Supervised

loss

Latent
wE W+

g Generator

34



HandsOff - Results

@ G <

.
i ._

\S

a8ew| SO 908
pojeIoUan) pojeIoUIL)

a8ewy
pojeIouar)

JseN "898
pojersudx)
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HandsOff - Long Tail Improvement

High-frequency
images

Frequency of image

Very low-frequency images

Images from sample data

Figure 1: Long-tailed data distrubtions.

Source Graph:
https://www.marksayson.com/blog/advances-
in-computer-vision-and-chasing-long-tail/

Generated
Seg. Mask

Predictive
Uncertainty

Proportion of training set
with glasses (N = 50)

Figure 2: Improved Jensen-Shannon divergence and mask quality

with more synthetic training data.
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IMAGEBIND: One Embedding Space To Bind Them All

Rohit Girdhar* Alaaeldin EI-Nouby* Zhuang Liu Mannat Singh
Kalyan Vasudev Alwala Armand Joulin Ishan Misra*
FAIR, Meta Al

https://facebookresearch.github.io/ImageBind

CVPR Highlight

37



ImageBind - Key ldea

ﬂ D) !f! ») Naturally Aligned IMAGEBIND !ﬁ
Images \%s Text A‘udio De.pth Thermal IMU ~ Emergent Alignment \ I
Web Image-Text-p Depth Sensor Data |4 ‘ Web Videos -")) Thermal Data Egocentrlc Videos - ))) u d 1

T » - s \ -

2 Y

Sheep basking in the sun

Figure 2. IMAGEBIND overview. Different modalities occur naturally aligned in different data sources, for instance images+text and
video+audio in web data, depth or thermal information with images, IMU data in videos captured with egocentric cameras, etc. IMAGE-
BIND links all these modalities in a common embedding space, enabling new emergent alignments and capabilities.

- Goal: multimodal representation learning (i.e. have single aligned feature space)
- But: no dataset couples modalities s.a. Vision, Audio, IMU, Depth, Thermal, ... — self-supervision
- Idea: contrastive learning on (I, M) pairs, where |=image and M=some other modality

38



ImageBind - Emergent Properties

Cross-modal retrieval

Audio Image & Video Depth Text
“A train pulls into a busy station”
|<) ) “Wind blows as a train moves
through a grassy landscape”
Train horn “People sip coffee in the dining car”
g e
. " . 5 . ¥ NOwW you can use
Embedding-space arithmetic Audio to image generation diffusion model
(DALLE-2) as image
Image Audio Retrieved image Audio Generated image / generator from
O — audio!

LR

Penguin calls

See demo at: https://imagebind.metademolab.com/
39



ImageBind - Emergent Properties

keyboard_typing 94% - b

»

() Sea waves )Keyboard typing )Clock alarm
Figure 5. Object detection with audio queries. Simply replacing
Detic [88]’s CLIP-based ‘class’ embeddings with our audio em-
beddings leads to an object detector promptable with audio. This
requires no re-training of any model.

»)Dog barking

ImageBind is initialized
with CLIP

Detic = pre-trained
text-based detection
module uses CLIP
embeddings

|dea: replace Detic’s
text embeddings with
audio embeddings

40



InstructPix2Pix: Learning to Follow Image Editing Instructions

Tim Brooks* Aleksander Holynski* Alexei A. Efros

University of California, Berkeley

CVPR Highlight

41



InstructPix2Pix - Goal

“Swap sunflowers with roses” “Add fireworks to the sky” “Replace the fruits with cake”

"1"":.‘)?']! L §

“What would it look like if it were snowing?”

S
B>
R S SER—

-
| 9
'0/

/v 3

Figure 1. Given an image and an instruction for how to edit that image, our model performs the appropriate edit. Our model does not
require full descriptions for the input or output image, and edits images in the forward pass without per-example inversion or fine-tuning.

42



InstructPix2Pix - Key ldea

Training Data Generation
(a) Generate text edits:
Instruction: “have her ride a dragon”

Input Caption: “photograph of a girl riding a horse” » GPT-3 ~» "~ ,
Edited Caption: p

(b) Generate paired images:

Stable Diffusion
+ Prompt2Prompt

Input Caption: “photograph of a girl riding a horse”
Edited Caption: “‘photograph of a girl riding a dragon

() Generated training examples:
nven to brick” “Color the cars pink” ‘Make it lit by fireworks”

B T

- First generate 450k synthetic training samples

“have her ride a dragon”
T 8

hotograph of a girl riding a dragon

”

Instruction-following Diffusion Model

(d) Inference on real images:

“turn her into a snake lady”

- Then supervised fine-tuning of pre-trained diffusion model conditioned by image

- Zero-shot generalization to real images

- But: performance is bottlenecked by models generating dataset

43



InstructPix2Pix - More Results

i j 'f**-hw, I’Q;w’

S— e

Ol TR -

Input “Add boats on the water” “Replace the mountains with a city skyline”

Figure 17. A landscape photograph shown with different contextual edits. Note that isolated changes also bring along accompanying
contextual effects: the addition of boats also adds wind ripples in the water, and the added city skyline is reflected on the lake.

44



InstructPix2Pix - Inherited Biases

Input “Make them look like flight attendants” “Make them look like doctors”

Figure 14. Our method reflects biases from the data and models it is based upon, such as correlations between profession and gender.

45



InstructPix2Pix - More Reading

DreamBooth: Fine Tuning Text-to-Image Diffusion Models
for Subject-Driven Generation

Nataniel Ruiz*12 Yuanzhen Li' Varun Jampani'
Yael Pritch! Michael Rubinstein® Kfir Aberman'
! Google Research 2 Boston University

Input images an the Acropolis an a doghouse i a bucket gettang a hatrcut

Figure 1. With just a few images (typically 3-5) of a subject (left), DreamBooth—our Al-powered photo booth—can generate a myriad
of images of the subject in different contexts (right), using the guidance of a text prompt. The results exhibit natural interactions with the
environment, as well as novel articulations and variation in lighting conditions, all while maintaining high fidelity to the key visual features
of the subject.

46



Integral Neural Networks

Kirill Solodskikh*  Azim Kurbanov*’  Ruslan Aydarkhanov’
Irina Zhelavskaya  Yury Parfenov =~ Dehua Song  Stamatios Lefkimmiatis

Huawei Noah’s Ark Lab

CVPR Award Candidate
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Traditional Pruning

Unstructured Pruning

aka “"weight pruning”

Source: https://neuralmagic.com/blog/pruning-overview/

Structured Pruning

aka “node pruning”

48


https://neuralmagic.com/blog/pruning-overview/

Integral Neural Networks - Key ldea

H E

= L L
Traditional weight tensor Smooth weight representation
Discrete weights Sample weights at grid

Grid res. influences compression

49



Integral Neural Networks

Weights

Computation

Fine-tuning

Deployment

Regular NN

Discrete multi-dim. tensors

Discrete transformations of inputs

Usually necessary after pruning

Fixed model size after pruning

Integral NN
R |

Smooth multi-dim. functions

Continuous integration operations
Can be discretized at inference

Not necessary

Resize model on-the-fly (e.g. on edge device)

50



Integral Neural Networks

RESNET18 CIFAR10 NIN CIFAR10

RESNET18 IMAGENET

O ———® L] 70 A
— — 90
90 N
\3\. 60
\ 801
80 50 1
o d o
& | -e- Il AN > 70 1 bl
3 70 { ~@~ Omean-mean o & 401
© ~®— Omean-sta o | D60 g
3 60 { ~®= Omean-1, i 3 3 301
K ~8~ Omean-1, e, 2 2] < 2
50 1 ~= Ouar-t, 404
~#- INN(our) e 10 4
40 1 —~e~ INN + partition tune(our) “\. 30 04
0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 0 5 0 15 20 25 30
Compression, % Compression, % Compression, %
a) b) c)

PSNR, dB

N
@
L

N
o

N
F

N
N

N
o

EDSR DIV2K
\. -
\.
\.\.
.
.X. =
* d

0 15 20 25 30 35 40
Compression, %

d)

Figure 1. Visualization of different channels selection methods without fine-tuning compared with our proposed integral neural networks.
a) ResNet-18 on Cifar10. b) NIN architecture on Cifar10. c) ResNet-18 on ImageNet. d) 4x EDSR on Div2k validation set. By compression

we denote the percentage of deleted parameters.
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Compressing pre-trained nets

Matrix of the original Permuted discrete Smooth weights
c’"t  discrete weights g weights X% representation

|

O e

Permutation Smooth
interpolation | 1
| H — —

N B
- algorithm
[

_ K N N

o o X

Figure 5. Toy example illustrating the permutation of filters in a discrete weight tensor in order to obtain a smoother structure.
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Foundation Models as Motion Planners (1/2)

Driess et al. 2023 “PaLM-E: An Embodied Multimodal Language Model”

54


http://www.youtube.com/watch?v=BhYnHZKiNhs

Foundation Models as Motion Planners (2/2)

should | slow down or speed up when | see orange lights?

: G . , : ind proceed
When you see orange lights while driving, it typically indicates a caution or warning. In f 5

general, you should slow down and prepare to stop when you see orange lights. Here are a \j7

few common scenarios where you might encounter orange lights and the appropriate

actions to take: proceed

he traffic light

. Traffic signals turning from green to orange (yellow): Slow down and prepare to stop. It is :
d ° d 9ey PIER . y traffic signals

generally recommended to stop if it is safe to do so before the signal turns red.
. Flashing orange lights at intersections: Treat flashing orange lights like a yield sign. Slow
down, be prepared to stop if necessary, and yield the right of way to other vehicles or
pedestrians as indicated by the specific traffic rules for that intersection.
. Emergency vehicles with flashing orange lights: When you see emergency vehicles, such as 0\35, U’UCKS,
ambulances or road maintenance vehicles, with flashing orange lights, slow down and move ution and
to a safe distance to allow them to pass. Follow the local traffic laws and regulations
regarding yielding to emergency vehicles.

. Construction or work zones with orange lights: In construction or work zones where orange

lights are used to indicate potential hazards, slow down and proceed with caution. Follow

any posted speed limits and be prepared for changes in road conditions. 55



"World Models” - GAIA-1 by Wayve

- World model = a generative model that predicts what happens next conditioned on an action
- Autoregressive model trained on Wayve's large unlabeled dataset

4X SPEED

56


http://www.youtube.com/watch?v=cwJ_TV9Daqo

"World Models” - GAIA-1 by Wayve

w4 0l 3 AL

Autonomous driving may be the first example of where we see embodied Al working



http://www.youtube.com/watch?v=GkNktnHy8-Q
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Robotics and Computer Vision

- “Robotics is the next big thing”
- Jitendra Malik
-~ “Vision has no use by its own. It needs to guide action.” Train in Simulation
- ~ "Robotics is 20 years behind computer vision”
-~ “Navigation and locomotion are close to being solved.”
-~ “Manipulation is far from being solved” -> Why?
- Control struggles with making and breaking of contact
- RL struggles with inaccurate simulations and sim to real gap
- Lack of dexterous multi-fingered hands
Urged the CV community to venture into manipulation
- Differences CV and robotics
- no standardized benchmarks
- no large datasets
- simto real gap
- hardware experiments are essential but take long
- Particular hot topics: visual pre-training for robotics, object representations

Qi et al. CoRL 2022

59



-~

CVPR

Impressions

~

Papers

-~

Food for
Thought

~




Al and “The Hype”

Rodney Brooks, also see “The Seven Deadly Sins of Al Predictions” blog
Roy Amara (1925 - 2007): “We tend to overestimate the effect of a technology in the short

run and underestimate the effect in the long run.”

IJCAI 1979, Tokyo

AN AUTOMOBILE WITH ARTIFICIAL INTELLIGENCE

Teruo Yatabe, Takeshi Hirose and Shuntetsu Matsumoto
Automobile Dlvision

Mechanical Engineering Laboratory
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Example: Fear that computers will replace librarians, librarians kept on going for 40 years
until eventually largely impacted by the internet and mobile devices.

FORECASTS: http://www.driverless-future com/?page id=384 March 27, 2017

NVIDIA to introduce level-4 enabling system by 2018 (2017)
NuTonomy to provide self-driving taxi services In Singapore by 2018, expand to 10 cities around world by 2020 (2016)
Delphi and MobilEye to provide off-the-shelf self-driving system by 2018 (2016)

Ford CEO announces fully autonomous vehicles for mobllity services by 2021 (2016) <=

Volkswagen expects first self driving cars on the market by 2019 (2016)

GM: Autonomous cars could be deployed by 2020 or 800nar (2016) <=

BMW to launch autonomous INext in2021 (2016) <=

Ford's head of product development: autonomous vehicle on the market by 2020 (2016) <=

Baldu's Chief Scientist expects large number of self-driving cars on the road by 2018 (2016)

First autonomous Toyota to be avallable in 2020 (2015) <=

Elon Musk now expects first fully autonomous Tesla by 2018, approved by 2021 (2015)

US Sec Trans: Driverless cars will be in use all over the world by 2025 (2015)

Uber fleet to be driverless by 2030 (2015)

Ford CEO expects fully autonomous cars by 2020 (2015) ==

Next generation Audl A8 capable of fully autonomous driving In'2017 (2014)
Jaguar and Land-Rover to provide fully autonomous cars by 2024 says Director of Research and Technology (2014)

Fully autonomous vehicles could be ready by 2025, predicts Daimler chalrman (2014) <=

Nissan to provide fully autonomous vehicles by 2020 (2013) ==
Truly autonomous cars to populate roads by 2028-2032 estimates insurance think tank executive (2013)

Continental to make fully autonomous driving a reality by 2025 (2012)

“Don’t be the best, be the only!” &1
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