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- Papers Submitted 9155
- Papers Accepted 2360
- Acceptance Rate 25.78%

- Attendance CVPR 23: 7088 in-person, 3215 virtual
- Attendance CVPR 19: 9375 (pre-COVID)

- Companies at CVPR 23: 116, 21200 square feet expo
- Companies at CVPR 19: 181, 41200 square feet expo

https://docs.google.com/file/d/1sgVrD3xLad2KfcMJLtjY9VjYY-l9DLoN/preview
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- Not my work! Just want to share some “aha” moments
- Hope to convey the paper’s message
- If you want to deep dive, read the paper
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- Problem: need to train one model 
for each patch size (expensive, 
inflexible, must scale image s.t. 16 
or 32 are a factor of resolution)

- Trade-off: small patch size → high 
performance, but expensive 
compute, and vice versa for large 
patch sizes 

Source: Dosovitskiy et al. ICLR 2021

Family of ViT Models
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FlexiViT - Key Idea 
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→ bilinear interpolation to resize patch embedding 
weights and positional embeddings
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FlexiViT - Results
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Heuristic: choose smallest patch size that still fits your compute budget ;-) 
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STEGO Follow-Up: Motivation

12

- Problem: labeled data is scarce, but unlabeled data is abundant
- Self-supervised learning recently demonstrated impressive results on unlabeled datasets
- STEGO (Hamilton et al., ICLR 2022) does unsupervised semantic segmentation
- To apply STEGO safely in real-world, it’s crucial to understand its working mechanisms

STEGO
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STEGO = DINO + Clustering
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- STEGO builds on DINO (Caron et al., ICCV 2021) pre-trained Vision Transformer
- Segmentation head S projects DINO feats into lower-dimensional space, “distilling” DINO 

feature correspondences
- Cluster Probe maps STEGO features to ontologies using k-Means
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Reproducibility Cocostuff
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Cluster Probe = SegHead + K-Means + Hungarian
Linear Probe =  SegHead + Lin. Layer + X Entropy
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Unsupervised = SegHead + K-Means + Hungarian
Linear Probe =  SegHead + Lin. Layer + X Entropy

reproduced!
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Unsupervised = SegHead + K-Means + Hungarian
Linear Probe =  SegHead + Lin. Layer + X Entropy

reproduced! not reproduced!
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Reproducibility Cocostuff
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Unsupervised = SegHead + K-Means + Hungarian
Linear Probe =  SegHead + Lin. Layer + X Entropy

reproduced! not reproduced!

why?
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STEGO’s Working Mechanisms
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Working Mechanism 1: 

- STEGO is a dimensionality reduction technique
- k-Means converges better in fewer dimensions
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STEGO’s Working Mechanisms
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Working Mechanism 2: 

- Segmentation head output forms more distinct 
clusters
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CLIP-Pixels Only (CLIPPO) - Key Idea
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- CLIP (Radford et al. 2021) trains separate image and text encoder
- CLIPPO uses CLIP pre-training objective, but only one vision transformer for both modalities
- CLIPPO benefits: half no. params, less reliance on engineering modality-specific nets (e.g. no 

text-specific embedding, no tokenizer, no vocabulary)
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CLIPPO - Results
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- CLIPPO approaches BERT performance on GLUE benchmark 
- “CLIPPO performs similarly to CLIP-style models (within 1-2%) on the main tasks CLIP was 

designed for - image classification and text/image retrieval” 
- Good results on VQA despite never trained on that

VQAv2 dataset: Classifying CLIPPO feats
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CLIPPO - Modality Gap
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Pre-training on text-text pairs with C4 (Colossal 
Clean Crawled Corpus) reduces modality gap

also see: Lian et al. “Mind the Gap: Understanding the Modality Gap in 
Multi-modal Contrastive Representation Learning”, NeurIPS 2022
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CLIPPO - Typographic Attacks
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Typographic attack: “the tendency of CLIP-style models to zero-shot classify an image according to 
adversarially injected scene text unrelated to the scene”

CLIPPO Result: “All models are largely able to ignore the typographic attack, and the CLIPPO models are 
on par with or better than the counterparts relying on a tokenizer.” 

Source: https://distill.pub/2021/multimodal-neurons/ 

https://distill.pub/2021/multimodal-neurons/
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Traditional (3D) Semantic Segmentation
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OpenScene - Key Idea
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1. Co-embed 3D text-image features 
2. Reason about properties of 3D points via cosine-similarity
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OpenScene - Demo
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https://docs.google.com/file/d/1yvPQN9q1tQUStyVKKwDDH9Yl9MWYHb7R/preview
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VisProg
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- VisProg - a framework that builds CV pipelines from natural language 
- “uses the in-context learning ability of GPT3 to generate python programs” 
- Each line invokes functions s.a. CV models, openCV or PIL routines, …

CLIP ViT

Stable Diff.

MaskFormer
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CVPR Highlight
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HandsOff - Key Idea
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- Trained on less than 50 labeled images
- GAN inversion for dataset generation
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HandsOff - GAN Inversion 101
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- “GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model so 
that the image can be faithfully reconstructed from the inverted code by the generator”

Source: Xia et al. “GAN Inversion: A Survey”, 2022

Figure 1: GAN inversion overview Figure 2: Invert GAN with encoder E, trained by min. rec. los
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HandsOff - Details
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grabs intermediate layers of StyleGAN2 generator, 
up-samples them, forms pixel-wise features

MLP head maps pixel-wise feature to label 
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HandsOff - Results
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HandsOff - Long Tail Improvement
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Source Graph: 
https://www.marksayson.com/blog/advances-
in-computer-vision-and-chasing-long-tail/

Figure 1: Long-tailed data distrubtions.  Figure 2: Improved Jensen-Shannon divergence and mask quality 
with more synthetic training data. 



37

CVPR Highlight



Merantix Momentum

ImageBind - Key Idea
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- Goal: multimodal representation learning (i.e. have single aligned feature space) 
- But: no dataset couples modalities s.a. Vision, Audio, IMU, Depth, Thermal, … → self-supervision
- Idea: contrastive learning on (I, M) pairs, where I=image and M=some other modality
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ImageBind - Emergent Properties
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See demo at: https://imagebind.metademolab.com/ 

now you can use 
diffusion model 
(DALLE-2) as image 
generator from 
audio!
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ImageBind - Emergent Properties
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- ImageBind is initialized 
with CLIP

- Detic = pre-trained 
text-based detection 
module uses CLIP 
embeddings

- Idea: replace Detic’s 
text embeddings with 
audio embeddings
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InstructPix2Pix - Goal
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InstructPix2Pix - Key Idea
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- First generate 450k synthetic training samples 
- Then supervised fine-tuning of pre-trained diffusion model conditioned by image 
- Zero-shot generalization to real images
- But: performance is bottlenecked by models generating dataset
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InstructPix2Pix - More Results
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InstructPix2Pix - Inherited Biases
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InstructPix2Pix - More Reading
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Traditional Pruning

48Source: https://neuralmagic.com/blog/pruning-overview/ 

aka “weight pruning”         aka “node pruning” 

https://neuralmagic.com/blog/pruning-overview/
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Integral Neural Networks - Key Idea 
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Traditional weight tensor
Discrete weights

Smooth weight representation
Sample weights at grid

Grid res. influences compression
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Integral Neural Networks
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Regular NN Integral NN

Weights Discrete multi-dim. tensors Smooth multi-dim. functions

Computation Discrete transformations of inputs Continuous integration operations
Can be discretized at inference

Fine-tuning Usually necessary after pruning Not necessary

Deployment Fixed model size after pruning Resize model on-the-fly (e.g. on edge device)
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Integral Neural Networks
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Compressing pre-trained nets
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Foundation Models as Motion Planners (1/2)

54Driess et al. 2023 “PaLM-E: An Embodied Multimodal Language Model”

http://www.youtube.com/watch?v=BhYnHZKiNhs
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Foundation Models as Motion Planners (2/2)
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- VQA Model by Wayve
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“World Models” - GAIA-1 by Wayve
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- World model = a generative model that predicts what happens next conditioned on an action
- Autoregressive model trained on Wayve’s large unlabeled dataset

http://www.youtube.com/watch?v=cwJ_TV9Daqo
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“World Models” - GAIA-1 by Wayve

57- Autonomous driving may be the first example of where we see embodied AI working

http://www.youtube.com/watch?v=GkNktnHy8-Q
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Robotics and Computer Vision
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- “Robotics is the next big thing”
- Jitendra Malik

- ~ “Vision has no use by its own. It needs to guide action.” 
- ~ “Robotics is 20 years behind computer vision” 
- ~ “Navigation and locomotion are close to being solved.” 
- ~ “Manipulation is far from being solved” → Why? 

- Control struggles with making and breaking of contact
- RL struggles with inaccurate simulations and sim to real gap
- Lack of dexterous multi-fingered hands

- Urged the CV community to venture into manipulation
- Differences CV and robotics 

- no standardized benchmarks 
- no large datasets
- sim to real gap
- hardware experiments are essential but take long

- Particular hot topics: visual pre-training for robotics, object representations 

Qi et al. CoRL 2022
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- Rodney Brooks, also see “The Seven Deadly Sins of AI Predictions” blog
- Roy Amara (1925 – 2007): “We tend to overestimate the effect of a technology in the short 

run and underestimate the effect in the long run.”
- Example: Fear that computers will replace librarians, librarians kept on going for 40 years 

until eventually largely impacted by the internet and mobile devices.

“Don’t be the best, be the only!”
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Thanks!

Alexander Koenig 
alexander.koenig@merantix.com 


