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Abstract—The ongoing COVID-19 pandemic challenges the
world to treat and reduce the growing number of daily infec-
tions. Effectively cutting off transmission routes requires broad
testing. Methods using chest X-ray images and deep learning
methods could help to satisfy this growing demand for rapid
testing. This work compares three deep learning approaches
for classifying chest radiography images into the categories
”normal’’, ”pneumonia” and ”COVID-19 pneumonia”. Our first
method performs transfer learning with a pre-trained ResNet-
50. Further, we propose a model that relies on anomaly detection
with the U-Net architecture and a ResNet-50 classifier. Our third
approach is based on multitask learning where a modified U-
Net performs a reconstruction task and a classification task
simultaneously. We obtain the best results from the multitask
learning method (average sensitivity of 80.0% and average
precision of 81.6%). The code repository of this project can be
accessed via https://github.com/axkoenig/dl4mi
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I. INTRODUCTION

The COVID-19 pandemic puts countries’ medical systems
under challenging pressure, not only due to the number of
available intensive care beds and respirators but also due to
the speed at which the population can be tested. The faster the
testing can occur the faster virus transmission routes can be
cut off [29]. Currently, the diagnosis is based on Polymerase
Chain Reaction (PCR), which is a time-consuming process.
Moreover, test capacities for PCR are sometimes still too low
to test a large number of people. Especially under the essential
need to correctly diagnose the infection to cut off transmission
routes, analyzing X-ray images can help in further solidifying
the diagnosis.

Radiologists found that X-ray images show ground-glass
opacity as a COVID-19-specific visual indicator for an infec-
tion [24]). By leveraging deep learning methods for analyzing
and visualizing these visual indicators we aim to support the
clinical process of diagnosing COVID-19. In comparison to
equipment of PCR tests, X-ray machines are more frequently
available in hospitals and even smaller medical practices. Due
to ethical concerns and laws, a diagnosis completely based on
a deep learning model will not be possible shortly. However,
these models can help to visualize the infected lung tissues
and even estimate the progress state of the disease via a
severity scoring [38]]. In this project, we focus on developing
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Fig. 1. Overview of related work

deep learning models that can classify chest X-ray images as
healthy, non-COVID pneumonia, or COVID-19 infection.

This report is structured as follows: section [I] gives an
overview of previous work done in the area of deep learning
for diagnosing COVID-19 which is grouped into the types
of approaches the research groups used. In section we
present our network architectures and we evaluate the results
in chapter [[V-D| We provide a critical discussion of the results
in chapter Lastly, we conclude and give ideas on future
work in section

II. RELATED WORK

Researchers put a strong effort into understanding the dis-
ease better to cope with its spread. The artificial intelligence
research community has leveraged machine and deep learn-
ing methods to aid the diagnosis of COVID-19. There are
approaches using CT Images [25] [32] [15] [37] [34] [19]
[7] and ones that use X-ray images for classification, see
Figure [} X-ray machines are more widely distributed in both
hospitals and smaller practices and since our project uses X-
ray images we are not going into detail about approaches using
CT images. Most of the related projects use a type of CNN
architecture [35] [26] [33] [1] [18] [14] [16] and [[12]. The
convolutional neural network (CNN) approaches get a good
accuracy for classifying into healthy, non-COVID and COVID
classes. However, any of them do not provide a sophisticated
visualization that helps to support the radiologists’ diagnosis.


https://github.com/axkoenig/dl4mi

A. COVID-Net by Wang et al.

The earliest and most prominent work at the moment is the
COVID-Net by Wang et al. [35]] who proposed the first version
of this COVID-19 detection network in only 7 days. Their
“generative synthesis” approach generates several architectures
and compares them on a test set. The best performing neural
network is characterized by selective long-range connectivity
and densely-connected layers. An architectural advantage of
the synthesized COVID-Net is that it contains intermediate
layers that act as central hubs and compensate computational
complexity and memory consumption of classical densely-
connected architectures. Furthermore, they assembled the
COVIDx dataset which is currently the biggest and most
broadly used baseline dataset. Several other research groups
have tested their models on the COVIDx [18]] [[12] [23]]. The
dataset by J. Cohen [9] which is one of the largest COVID-19
chest X-ray image collections is one of the building blocks of
COVIDx.

B. Combining CNNs and SVM

An approach which differs slightly from the other CNN-
based approaches is the one of Sethy et al. They compare the
performance of different CNN architectures combined with a
support vector machine (SVM) classifier [31]]. The features of
a deep layer are extracted and fed to the SVM classifier. They
compare the following architectures: AlexNet, DenseNet201,
GoogleNet, InceptionV3, ResNetl8, ResNet50, ResNet101
VGG16, VGG19, XceptionNet and InceptionResNetV2. The
ResNet50 outperforms the other models with an accuracy
of 95.38% and a specificity of 93.47%. They combined the
dataset of Cohen et al. [9]] and the Kaggle Pneumonia Dataset
[22].

C. Anomaly Detection

Zhang et al. [39] focus on differentiating viral pneumonia
from non-viral pneumonia and healthy lungs and formulate
this as a one-class classification-based anomaly detection.
Their anomaly detection model consists of a shared feature
extractor, an anomaly detection module, and a confidence
prediction model. An X-ray image then counts as an outlier if
it lies above a defined anomaly score. The advantage of this
approach is that all known diseases are treated as one class and
detected outliers can either be COVID-19 or a harbinger for
newly arising diseases. They use an in-house dataset combined
from the X-VIRAL and the X-COVID dataset which are
collected from 6 institutions and consist of 106 COVID-19
and 107 normal cases. The highest accuracy they achieve is
80.65% and the highest specificity is 79.87%.

Khobani et al. [23]] use autoencoders to encode the latent
representation of healthy and non-COVID pneumonia. For
the classification of an X-ray image at hand, the sample is
fed through both autoencoders. Ideally, only the healthy and
non-COVID specific features are reconstructed. They build a
residual tensor from the two reconstructed images which is
then fed into a ResNet18 classifier. This allows them to exploit
the limited available data of COVID-19 and also provides

Fig. 2. Goal: discriminate between the three classes

tools that can explain the diagnosis. They reach an accuracy
of 93.50% and a precision of 93.63%.

D. Capsule Networks

Afshar et al. [2] leverage capsule networks that were first
proposed by Sabour et al. [28]. The advantage of capsule
networks is that spatial information such as object pose and
orientation is preserved better than in CNNs. Furthermore,
CNN s require larger datasets and a higher number of training
parameters than capsule networks. Furthermore, Afshar et al.
apply the concept of transfer learning by using images of the
same domain. In comparison to pre-training on natural images,
they were able to improve their accuracy from initially 95.7%
to 98.3% and their specificity from 95.8% to 98.6%. Wang
et al. for example performed transfer learning using natural
images from ImageNet [35] [11].

Generally, all existing projects deal with the problem of an
unbalanced dataset since COVID-19 is a newly emerging dis-
ease and data has yet to be collected. There are plenty of X-ray
images of non-COVID pneumonia and healthy subjects. Most
of the CNN-based projects deal with the unbalanced dataset by
over- or undersampling or a weighted loss function. The last
approach of Khobani et al. tackles this issue architecturally:
at an initial stage one autoencoder is trained for the healthy
and non-COVID pneumonia images each. In a second stage all
images (i.e. healthy, pneumonia and COVID-19) are processed
by a second classifier module which uses the autoencoders
trained in the first stage.

III. DATASET

We use the COVIDx3 dataset of Wang et al. [|35]] which is
comprised of the following openly accessible datasets.

1) COVID-19 Image Data Collection by Cohen et al. [9]

2) Figure 1 COVID-19 Chest X-ray Dataset Initiative [8]

3) RSNA Pneumonia Detection Challenge dataset [22]

4) ActualMed COVID-19 Chest X-ray Dataset Initiative [3|]
5) COVID-19 radiography database [21]

The COVIDx3 dataset is unbalanced. The training set
constists of only 253 COVID-19 cases, while there are 7,966
healthy cases and 5,451 non-COVID pneumonia images. The
test set consists of 300 samples (i.e. 100 samples for each
class). It is important to note that only train and test sets but
no validation set are provided. Figure [2| shows samples images
from the dataset.



IV. METHODS
A. ResNet-50 Baseline Classifier

The first approach is motivated by the recent success of
transfer learning. Transfer learning refers to the process of
using a pre-trained neural network and fine-tuning its parame-
ters to a specific task. We use the ResNet-50 architecture [|17]]
which was pre-trained on 1000 classes from the ImageNet
dataset [11]]. The network hereby learned to extract low-level
features such as patterns and shapes in its first layers. As
shown in figure |3| we use these first layers of the ResNet-
50 as a pattern extractor. We keep all of its parameters fixed
and replace the last layer with our own fully connected layer,
which maps to three classes (i.e. "Normal”, “Pneumonia”,
”COVID-19”) instead of the original 1000 classes. Therefore,
the high-level features in the last layer that are specific to the
ImageNet dataset are discarded.

This approach serves as a baseline for comparison to
the other two algorithms. With this baseline classifier fy
we also evaluate which approach handles the imbalance of
the COVIDx dataset the best. Our experiments showed that
weighting the loss function provided slightly better results than
oversampling the under-represented classes. Consequently, we
choose the weighted cross-entropy function in equation (| as
our classification loss L£.. Higher weights w; are given to
samples that occur less often in the dataset. To ensure com-
parability, the classification loss is the same for all presented
approaches unless stated otherwise.
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B. Anomaly Detection with U-Net

The second approach is based on anomaly detection using
deep autoencoders. Such approaches provided good results in
tasks such as lesion segmentation in brain magnetic resonance
images [3[]. Due to its recent successes we chose the U-Net
[27] autoencoder and used an implementation from the work
by Buda et al. [[6] which was originally used for abnormality
segmentation in brain MRI. We slightly modified the network
to output three channels instead of one since we want to
reconstruct a full image instead of a binary segmentation map.
The training of our method follows a two-step approach.

Stage 1: In this stage the autoencoder gy is trained to
reconstruct non-anomalous data (i.e. healthy chest radiography
images) by minimizing the reconstruction loss in equation [2]
The network specializes in the task of reconstructing healthy
chest radiography images in a fully unsupervised manner.

N
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Stage 2: Consequently, the network gy is used to run
inference on images of all three classes (i.e. “Normal”,
”Pneumonia”, "COVID-19”). Since the autoencoder was only
trained on healthy data it should not be able to reproduce

those image features that are specific to the disease. Thereby,
the autoencoder produces an image that resembles a healthy
image. To isolate the difference between the reconstructed
image go(X; and the original image X; we subtract the
reconstruction from the original to obtain a so-called anomaly
map (also see figure ). We then train a ResNet-50 classifier to
discriminate between the three classes based on the anomaly
map. The ResNet-50 follows the same architecture as our
baseline classifier from section and was also pre-trained
on ImageNet. While the parameters of the last layer of the
ResNet-50 are trained from scratch on the new classification
task, the parameters of the autoencoder gy are left unchanged.

C. Multitask Learning

The third approach for COVID-19 detection is based on
multitask learning. The network is guided to solve a recon-
struction task and a classification task simultaneously.

We augment U-Net with a classification network that is
appended to U-Net’s bottleneck (see figure [5). The architecture
of the appended network is inspired by the work of Frid-Adar
et al. [13] who used this approach to classify and segment
endotracheal tubes in chest radiographies. The appended net-
work consists of an average pooling layer which is used to
condense the information in the bottleneck. It is followed by
two fully connected layers and a softmax operation which
map to the three classes. The overall loss function in equation
[l is a weighted combination between the classification loss
L. and the reconstruction loss £,.. This joint optimization of
the reconstruction and classification objective is motivated by
the idea that both tasks can assist each other by producing
more meaningful encodings in the bottleneck. The scaling
parameter for the reconstruction loss is « and is experimentally
determined.

L=L.A+aLl, 3)

D. Implementation Details

The presented methods were implemented in the PyTorch
deep learning framework and trained using an NVIDIA Tesla
K80 graphics processor. We suspect that other works such as
the one by Wang et al. [36] indirectly overfit to the COVIDx
test set. The approach by Wang et al. is based on “generative
synthesis” — a machine-driven design exploration strategy.
Wang et al. did not mention validation data in their publication
while COVIDx only provides a train and a test set. Therefore,
we suspect that hyper-parameter tuning was done on the test
set, which suggests that the estimated performance of their
approach on unseen data may be too optimistic. To avoid
indirectly overfitting on the test set we performed k-fold cross-
validation (with & = 10). All classifiers were trained for 20
epochs in total (2 epochs per fold) with batch size 16. The U-
Net in Stage 1 of the anomaly detection approach was trained
for 10 epochs and batch size 16. The Adam optimizer with
standard hyperparameters was used (learning rate s = 0.0002,
B1 =0.9, B2 = 0.999).



Fig. 3. Architecture of ResNet-50 Baseline Classifier

Fig. 4. Architecture of Anomaly Detector

Furthermore, the training data was augmented using the
following methods in a pre-processing step.

o Random horizontal flip with probability p = 0.5

« Random rotation with range r = £5°

o Random crop to [3,224,224] with scale s € [0.75,1.0]
o Random brightness change with factor f = 0.2

« Random contrast change with factor f = 0.1

V. EXPERIMENTAL RESULTS

The performance of the three approaches on the test set
is compared. We show confusion matrices for each approach,
where the ground truth results are represented by the rows, and
the algorithmic predictions are shown in the columns. Refer to
tables and |V| to see a direct comparison of the sensitivity
and precision of the approaches.

A. ResNet-50 Baseline Classifier

The ResNet-50 baseline provides good sensitivity for im-
ages that come from the normal and pneumonia class (both
88%). However, the sensitivity for COVID-19 images is much
lower (only 42%). This comes from the unbalanced dataset
which provides much fewer cases for COVID-19. What should
be noted is that the precision of the COVID-19 is very high
(i.e. if COVID-19 is predicted it is likely true).

TABLE I
CONFUSION MATRIX OF RESNET-50 BASELINE CLASSIFIER
Normal | Pneumonia | COVID-19
Normal 88 12 0
Pneumonia 11 88 1
COVID-19 18 40 42

B. Anomaly Detection with U-Net

The anomaly classifier provides worse results in the healthy
class than the baseline classifier. However, the anomaly maps
provide a benefit for the classes the U-Net was not trained on
(i.e. 1% more sensitive for pneumonia images and 16% more
sensitive for COVID-19 images).

An interesting byproduct of this approach are the anomaly
maps. Figure [ shows some sample images from all three
classes. It can be noted that the anomaly maps highlight any
haziness that is present in the original image. The “normal”
anomaly maps in the left of figure [6] show a clear view of both
lungs whereas for pneumonia cases the anomaly maps show
more hazy patterns across the lungs. For the COVID-19 cases,
the anomaly maps highlight the diffuse ground-glass opacity
in both lower lobes, which aligns with previous pathological
findings [10].



Fig. 5. Architecture of Multitask U-Net

Fig. 6. Anomaly maps generated for all three classes

TABLE 11
CONFUSION MATRIX OF ANOMALY DETECTION WITH U-NET
Normal | Pneumonia | COVID-19
Normal 46 47 7
Pneumonia 3 89 8
COVID-19 7 35 58

C. Multitask Learning

The multitask learning approach provided the most promis-
ing results of all presented methods (see table [[I). The
parameter o = 0.5 performed the best in several experiments.

D. Comparison

From table it becomes clear that the multitask learning
approach provided the highest sensitivity on the test set on
average. For the normal and the pneumonia class the mul-
titask learning method was not the most sensitive, although

TABLE III
CONFUSION MATRIX OF MULTITASK LEARNING
Normal | Pneumonia | COVID-19
Normal 87 11 2
Pneumonia 4 88 8
COVID-19 7 28 65

the sensitivity difference to the best performing method is
only 1% each. It should be noted, that for the COVID-19
class the multitask learning approach outperformed the other
approaches by a large margin. Furthermore, multitask learning
also provides the best average precision while only being
outperformed by the baseline classifier in the COVID-19 class.

In general, it is unsurprising that the performance of all
approaches for the COVID-19 class is significantly worse than
for the normal and the pneumonia class. This is due to the
severe lack of data in the COVID-19 class. Interestingly, we



TABLE IV
AVERAGE AND CLASS SENSITIVITY OF APPROACHES (IN %)
Normal | Pneumonia | COVID-19 | Average
ResNet-50 88.0 88.0 42.0 72.7
Anomaly 46.0 89.0 58.0 64.3
Multitask 87.0 88.0 65.0 80.0
TABLE V
AVERAGE AND CLASS PRECISION OF APPROACHES (IN %)
Normal | Pneumonia | COVID-19 | Average
ResNet-50 75.2 62.9 97.7 78.6
Anomaly 82.1 52.0 79.5 71.2
Multitask 88.8 69.3 86.7 81.6

obtain high average precision scores for COVID-19 images,
but less so in the pneumonia class.

VI. DISCUSSION AND OUTLOOK

One of the main challenges we addressed in this project was
handling the imbalance of the dataset. We pre-processed the
data using data augmentation, used a weighted loss function,
and trained the models using cross-validation. Furthermore,
we reduced dependency on COVID-19 images by using an
autoencoder as an architectural building block of the anomaly
detection approach. We verified that ResNet-50 is a good
baseline model and compared different approaches with each
other. We believe the multitask learning approach has a lot of
potential for future development.

In future work, we would like to combine the weighted loss
function with over- or undersampling. Furthermore, to deal
with the unbalanced data other loss functions could be used,
e.g. the cosine loss by Barz et al. [4]] or the perceptual loss
by Johnson et al. [20].

The project can further be extended by augmenting the
original X-ray scans with an overlay that highlights the
affected areas of the lungs. This could either be done by
using Grad Gam by Selvaraju et al. [30] or by using the
anomaly maps we presented in figure [6] It could be observed
that the anomaly maps created for COVID-19 cases show
more dense patterns in the lower lobes, while non-COVID
pneumonia shows an overall haziness and healthy lungs are
mostly clear. By overlaying colored anomaly maps onto the
original X-ray scan a visualization tool for radiologists could
be created. However, it should be investigated in cooperation
with medical experts if the anomaly maps obtained from our
second method are medically meaningful. A sanity check
for the anomaly detection method should be performed by
calculating the pixel-wise distance between the original and
the reconstruction of healthy X-ray scans and sick images. If
our assumption is correct, the average distance of healthy scans
to their reconstruction should be much lower than the ones of
sick scans, since the autoencoder is trained solely on healthy
images and should be less good in reconstructing sick samples.
The anomaly detection approach can further be extended as
an early warning system when trained on all existing lung

diseases. Outliers can be detected and further scrutinized to
see newly arising diseases earlier.

VII. CONCLUSION

Our approach focuses on COVID-19 detection using Chest
X-ray images and leverages the methods of deep learning. A
big challenge is the imbalance of the dataset because only a
few COVID-19 X-ray scans are available due to the novelty
of the disease in comparison to other known pneumonia
and healthy X-ray scans. To deal with this issue we try
alternative architectures compared to other research groups
that often implement classical CNNs. In our work, we compare
three different approaches with each other of which two use
an autoencoder. We found that the last architecture using
multitask learning works best. However, for pure classification
into COVID-19, non-COVID pneumonia, and healthy cases
this does not outperform the state of the art classification
task. On the other hand, our approaches bring other notable
advantages such as visualization in the form of anomaly maps.
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