
Imperial College London

Mechatronics in Medicine Laboratory

A modular ROS platform for virtual reality assisted teleoperation of KUKA iiwa robot
manipulators and ReFlex TakkTile robotic hand supporting the Leap Motion gesture

tracking device

Project Report

Author: Alexander Koenig
Supervisors: Dr. Fabio Tatti

Dr. Riccardo Secoli
Advisor: Prof. Dr. Ferdinando Rodriguez y Baena
Dates: 01.04.2019 - 12.09.2019





Glossary

GUI Graphical User Interface. 21, 22, 35, 48–50

HMD Head Mounted Display. 11, 53

KST KUKA Sunrise Toolbox. 19, 21, 23, 36, 61, 62

PTP Point to point. 19–21, 23, 33, 34, 36, 61

RGB-D Red-Green-Blue-Depth. 6, 11, 53, 54, 56, 57

ROS Robot Operating System. 1, 5, 11, 12, 19–24, 29, 33–37, 39, 40, 43, 45, 47, 52

VR Virtual reality. 12, 53

3





List of Figures

1.1 Overview of robotic rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Hardware architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Software Architecture: Leap Motion control . . . . . . . . . . . . . . . . . . . . . 14
1.4 Networking setup KUKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Networking setup robotic hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 KUKA Sunrise Toolbox communication scheme [7] . . . . . . . . . . . . . . . . . 19
2.2 PTP Motion [1, p. 304] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 LIN Motion [1, p. 304] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Feedback of ROS services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Graphical user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Workspace parameters (side view) [2, p. 36] . . . . . . . . . . . . . . . . . . . . . 26
2.7 Workspace parameters (top view) [2, p. 36] . . . . . . . . . . . . . . . . . . . . . 26
2.8 Workspace plot (center line [2,-1,0], opening angle 50 deg) . . . . . . . . . . . . 27
2.9 Workspace plot (center line [1,0,0], opening angle 120 deg) . . . . . . . . . . . . 27
2.10 Coordinate systems [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.11 Joint convention [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.12 Calculation of workspace center . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.13 Calculation of home position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.14 Home position with center line [1,0,0] . . . . . . . . . . . . . . . . . . . . . . . . 31
2.15 Home position with center line [-1,0,0] . . . . . . . . . . . . . . . . . . . . . . . . 31
2.16 Plot of workspace custom home position [-45, 20, 0, -100, 0, 40, 0] . . . . . . . . 32
2.17 Hand coordinate system [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.18 Coordinate systems of left hand right hand [5] . . . . . . . . . . . . . . . . . . . . 38
2.19 Leap Motion coordinate system [5] . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.20 Coordinate transformations overview . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.21 Position of Leap Motion in KUKA base frame . . . . . . . . . . . . . . . . . . . . 40
2.22 Transformation to virtual Leap Motion . . . . . . . . . . . . . . . . . . . . . . . . 41
2.23 Transformation to desired KUKA tool pose . . . . . . . . . . . . . . . . . . . . . . 42
2.24 Frames published by leap_kuka node viewed in RViz . . . . . . . . . . . . . . . . 43

3.1 Human flexion angles [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Leap Motion diagnostic visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5



6 List of Figures

4.2 Leap Motion workspace [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Workspace as viewed inside the Oculus . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Camera pose calculation in KUKA base frame . . . . . . . . . . . . . . . . . . . . 54
5.3 Tf tree when camera_apriltag and a KUKA control node running . . . . . . . . . . 55
5.4 RViz showing fused RGB-D data . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Network architecture of GGCNN [4] . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 RGB view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Grasping point prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 RGB view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5 Grasping point prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.6 Enhanced GGCNN Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



List of Tables

1.1 Networking settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Folder Structure of GitHub repository . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Matlab scripts of the KUKA control node . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 ROS services provided by the KUKA control nodes . . . . . . . . . . . . . . . . . 21
2.3 ROS messages published by the KUKA control node . . . . . . . . . . . . . . . . 23
2.4 KUKA configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Leap Motion configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 Transformations published by leap_kuka node . . . . . . . . . . . . . . . . . . . . 40

7





Contents

List of Figures 5

List of Tables 7

1 Introduction 11
1.1 Hardware Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Software Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Networking Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Folder Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 KUKA Control Node 19
2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Scripts Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 KUKA Motion Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Services of Control Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Topics of Control Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.5 KUKA Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.6 Workspace Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.7 Enforcing Workspace Boundary . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.8 Home Position Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.9 Custom Home Pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.10 Control Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.11 Running Control Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Leap Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.1 Leap Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.3 Coordinate Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Robotic Hand Node 45
3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Leap Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Tips and Tricks 47
4.1 Leap Rig Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9



10 Contents

4.2 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Leap Motion Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 ROS Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Vision 53
5.1 Virtual Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Visual Fiducial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 RGB-D Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Autonomous Grasping 57

7 Future Work 61

Bibliography 63



1 Introduction

In this report a modular ROS platform for the teleoperation of a KUKA iiwa (7 R800 or 14 R820)
robot manipulator and an attached ReFlex TakkTile robotic hand is presented. The system sup-
ports the control of both devices using the Leap Motion gesture tracking device. It also features
the integration of a depth camera and a virtual reality HMD. The following sections give a brief
overview of the involved hardware and software components. Since this is a modular system not
all pieces of hardware (or software) are needed to run a specific functionality of the system.

1.1 Hardware Components

Figure 1.1: Overview of robotic rig

Figure 1.2 shows an overview of the hardware architecture of the robotic rig. Ethernet cables
should be category 5 or higher. The RGB-D camera is mounted on a tripod.

11



12 CHAPTER 1. INTRODUCTION

• KUKA iiwa 7 R800 or 14 R820

• ReFlex TakkTile Robotic Hand

• Leap Motion

• Oculus Rift DK2

• Asus Xtion Pro Live

• Switch

• 3 ethernet cables

1.2 Software Components

The system was developed and tested using the following software.

• Ubuntu Xenial 16.04 LTS

• Python 2.7

• Numpy 1.11.0

• MATLAB Version 9.6 (R2019a)

• MATLAB Instrument Control Toolbox Version 4.0 (R2019a)

• MATLAB Robotics System Toolbox Version 2.2 (R2019a)

• MATLAB Robotics System Toolbox Interface for ROS Custom Messages

• ROS Kinetic (Desktop Install recommended)

• KUKA MatlabToolboxServer on KUKA Robot Controller. See user guide of KUKA Sunrise
Toolbox

• Only for grasp prediction: CUDA V10.1.168 (currently not needed)

• Only for grasp prediction: Conda 4.6.14 (installed miniconda2)

• Only for grasp prediction: Conda environment with dependencies in grasping/env/environ-
ment.yaml

Figure 1.3 shows an overview of the ROS network used for the control of the robotic rig using
the Leap Motion tracking device. The ROS nodes for the integration of the VR display and the
depth camera into the platform are intentionally not displayed in Figure 1.3 since these nodes run
completely independently from the control of the robotic rig using the Leap Motion.

https://uk.mathworks.com/help/robotics/ug/install-robotics-system-toolbox-support-packages.html
https://uk.mathworks.com/matlabcentral/fileexchange/49810-robotics-system-toolbox-interface-for-ros-custom-messages
http://wiki.ros.org/kinetic/Installation/Ubuntu
https://github.com/Modi1987/KST-Kuka-Sunrise-Toolbox
https://github.com/Modi1987/KST-Kuka-Sunrise-Toolbox


1.2. SOFTWARE COMPONENTS 13

Ethernet

Computer

Ubuntu 16.04
ROS Kinetic, runs roscore
ideally has graphics card

KUKA interface

KUKA Controller

runs MatlabToolboxServer 
automatic mode
ethernet cable on X66 port

M6 Screws

KUKA Robot iiwa LBR

model R800
7 Joints, redundant
workspace defined by 
ROS node

Ethernet

Ethernet

Switch

USB

Leap Motion Controller

Gesture tracking device
Infrared projectors
Stereo camera

ReFlex Takktile Hand

RightHand Robotics
3 fingers, 4 DOF
ROS compatible

USB

ASUS RGBD Camera

Asus Xtion Pro Live 
Structured light technology
Distance of use: 0.8 - 3.5m

M6 Screws

Flange - Tool Connector

3D printed 
carbon enforced
CAD files in repository

Apriltag Visual Fiducial

3D printed marker panel 
detected by RGBD camera
CAD files in repository

USBHDMI

Oculus VR HMD

Oculus Rift DK 2
Resolution 1920*1080
Full HD OLED Display

Figure 1.2: Hardware architecture



14 CHAPTER 1. INTRODUCTION

leap_motion/leap_device 
[Human]

Leap Motion Node

open sourced by ROS community
official ROS driver
publishes hand data

Leap Deamon

open sourced by Ultrahaptics
core Leap Motion software

reflex_takktile/radian_hand_command
[RadianServoCommands]

Leap Hand Node

language: python 2.7
initial calibration of hand
publishes robotic hand closure angles
active if "kuka/gripper_control" is true
offers mode to run hand indpendently

tf/tool_frame/desired
[TransformStamped]

Leap KUKA Node

language: python 2.7
requires params in config file
averaging filter
determines base to tool transform
publishes desired tool pose 

ReFlex TakkTile Node

open sourced by RightHand Robotics
official ROS driver
offers ROS services for calibration
controls robotic hand

kuka/gripper_control [Bool]

KUKA Control Node

language: Matlab
accesses KUKA Sunrise Toolbox
requires params in config file
calculation of home pose
inverse kinematics calculation 
controlled by ROS services (or GUI)

ROS Network

Other Software

MatlabToolboxServer

available open source
Java code deployed to controller
interface for Kuka Sunrise Toolbox

Figure 1.3: Software Architecture: Leap Motion control



1.3. INSTALLATION 15

1.3 Installation

This is a step by step guide on how to install the software taken from the README file of the
GitHub repository. Note that the above software components first need to be installed.

1. Install all of the above software components.

2. Initialize a clean catkin workspace. Open a terminal and type

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace

3. Clone this repository with all its submodules in the src folder of your workspace

git clone --recursive 
git@github.ic.ac.uk:KukaProject/alex_code.git

4. Install all dependencies. You might need to setup rosdep first

rosdep update
rosdep install --from-paths src --ignore-src -r -y 

5. Build workspace with catkin build

cd ~/catkin_ws
catkin build 

6. Remember to source the setup.bash file or add it to your .bashrc

source /opt/ros/kinetic/setup.bash
or
echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

7. Call rosgenmsg("~/catkin_ws/src/kuka/kuka_msgs") in Matlab

command window and follow onscreen instructions. See further instructions here



16 CHAPTER 1. INTRODUCTION

1.4 Networking Setup

Figure 1.4: Networking setup KUKA

Figure 1.5: Networking setup robotic hand



1.5. FOLDER STRUCTURE 17

Setting KUKA Robotic Hand
Address 172.31.1.55 10.1.1.10
Netmask 16 254.0.0.0
Gateway 172.31.1.110 0.0.0.0

Table 1.1: Networking settings

Remember to check "Require IPv4 addressing" button for the robotic hand. Also make sure your
ethernet connection shows up as “eth0”. If it does not this link might help. Please view the Robotic
Hand’s documentation for more details. In their instructions you can skip all sections on cloning
and building the drivers as they will already be included in this package. Before you use the
networking connections make sure you actually connect to them by clicking on the connections
in the networking center.

1.5 Folder Structure

Folder Name Contents
cad CAD files of 3D printed parts
common library of common functions used by leap_hand and leap_kuka
docs handbook
grasping code for autonomous grasping prediction (work in progress)
kuka code for controlling the KUKA robot
leap_hand code to interface between Leap Motion node and robotic hand node
leap_kuka code to interface between Leap Motion node and KUKA node
leap_rig files to start Leap Motion control of KUKA and robotic hand
modules third party software (created upon recursive clone)
vision all vision related code (camera and virtual reality)

Table 1.2: Folder Structure of GitHub repository

https://askubuntu.com/questions/767786/changing-network-interfaces-name-ubuntu-16-04
https://www.labs.righthandrobotics.com/reflex-quickstart




2 KUKA Control Node

The KUKA control node essentially provides a ROS wrapper of the Kuka Sunrise Toolbox pre-
sented in [7]. The Kuka Sunrise Toolbox is a Matlab Toolbox which interfaces with a Java appli-
cation called MatlabToolboxServer on the KUKA robot controller. The toolbox provides intuitive
Matlab functions to control the robot. Figure 2.1 shows an overview of the KST architecture.

Figure 2.1: KUKA Sunrise Toolbox communication scheme [7]

2.1 General

2.1.1 Scripts Overview

The KUKA control package offers four main scripts in the directory kuka/kuka_control/scripts.
The folder functions contains all the relevant functions that are used within these four scripts.

Script Name Functionality
ptpController.m ROS interface for PTP control of the robot
realTimeController.m ROS interface for real-time control of the robot
simpleController.m short script to send the robot to a joint configuration
workspacePlotter.m script to plot a workspace defintion

Table 2.1: Matlab scripts of the KUKA control node

19



20 CHAPTER 2. KUKA CONTROL NODE

2.1.2 KUKA Motion Types

The two motion types used in this software are PTP movements and Direct Servo motions. The
ptpController.m script uses only PTP movements, whereas the realTimeController.m script
uses both methods (movement to the home position, zero position, the mirroring pickup point
in PTP mode, otherwise in real-time mode). Direct Servo is a functionality issued by KUKA to
allow for "soft" real-time control of the robot in joint space. The documentation about the Direct
Servo motion type is quite sparse, unfortunately. Any motions executed with the Direct Servo
functionality are referred to as real-time motions in this report.

This is a description of PTP movements taken from the KUKA manual. "The robot guides the
TCP along the fastest path to the end point. The fastest path is generally not the shortest path
in space and is thus not a straight line. As the motions of the robot axes are simultaneous and
rotational, curved paths can be executed faster than straight paths. PTP is a fast positioning
motion. The exact path of the motion is not predictable, but is always the same, as long as the
general conditions are not changed" [1, p. 303].

Below you can get a graphical intuition of the PTP motion type as opposed to the linear motion
type (which is not used in the software). In the LIN motion type the "robot guides the TCP at the
defined velocity along a straight path in space to the end point" [1, p. 304].

Figure 2.2: PTP Motion [1, p. 304]

Figure 2.3: LIN Motion [1, p. 304]

The PTP and real-time ROS nodes use the functions movePTPJointSpace(jPos, relVel) and



2.1. GENERAL 21

sendJointsPositionsf(jPos) that are offered by the KST to move the robot. The jPos variable
is a 1x7 cell array of target joint positions. The relVel variable specifies the relative motion
execution speed (i.e. a value from 0 to 1, with 1 indicating maximum speed). Please refer to the
KST’s user manual in their GitHub repository for more information.

2.1.3 Services of Control Scripts

Both the ptpController.m and the realTimeController.m script have exactly the same ROS
interface. They can both be controlled with ROS services or a Graphical User Interface. Table
2.2 shows a list of the services provided by the script. When the ROS services are called (like
shown in Listing 2.1) the user will receive a feedback message, if the service call was successfully
executed (also see Figure 2.4).

Service Name Service Type Description
kuka/exit_app_emergency kuka_msgs/exitAppEmergency terminate Matlab
kuka/exit_app kuka_msgs/exitApp shutdown control script
kuka/kuka_control kuka_msgs/setKukaControl switch KUKA control on/off
kuka/gripper_control kuka_msgs/setGripperControl switch gripper control on/off
kuka/scaling_factor kuka_msgs/setScalingFactor scale translation

Table 2.2: ROS services provided by the KUKA control nodes

rosse rv i ce c a l l kuka / exit_app_emergency
rosse rv i ce c a l l kuka / ex i t_app
rosse rv i ce c a l l kuka / kuka_cont ro l true
rosse rv i ce c a l l kuka / g r i p p e r _ c o n t r o l true
rosse rv i ce c a l l kuka / s c a l i n g _ f a c t o r 0.7

Listing 2.1: Usage of ROS services

All services become available once either the ptpController.m or the realTimeController.m
Matlab script is run. Use the exit_app service to shut down the connection to the robot controller
and terminate Matlab. The exit_app_emergency service will terminate Matlab immediately with-
out shutting down the robot connection. The kuka_control service is used to enter either PTP
or real-time control mode (depending on which script is running). With the gripper_control ser-
vice the boolean which is published on the kuka/gripper_control ROS topic can be changed.
The fact that users have to activate the control of the KUKA and the gripper once the control script
is running can be seen as a safety measure to avoid unintentional motions. The range in which
movements can be scaled is 0.1 to 1.5. It is not encouraged to change this to ensure safety.

The Graphical User Interface in Figure 2.5 can also be used to control the software. Each service
corresponds to a button on the GUI (except the "Reset Scaling Factor" button). The slider in the

https://github.com/Modi1987/KST-Kuka-Sunrise-Toolbox


22 CHAPTER 2. KUKA CONTROL NODE

Figure 2.4: Feedback of ROS services

GUI makes the scaling factor continuously adjustable. The "ROS Control" buttons in the KUKA
and Gripper panels will turn green once the respective functionality is actually available (also
turns green if activated through service call). This gives an intuitive graphical feedback in which
state the software is currently in.

Figure 2.5: Graphical user interface



2.1. GENERAL 23

2.1.4 Topics of Control Scripts

When either the ptpController.m or the realTimeController.m is run the below ROS top-
ics become available and data about the robot state is published. Especially notable is the
kuka/gripper_control topic, which indicates the status of an attached gripper (see chapter
3). All transforms published are in the KUKA base frame and can be conveniently accessed in
the ROS tf tree.

Note that all messages of the kuka_msgs/ type and the tf/kuka/flange_frame/measured can
not be provided while the robot moves in real-time mode. The topics will still exist, but while real-
time movements are executed no new messages will be published to these topics. The reason for
this is that when in real-time mode, the KST does not allow to request the robot state. This only
works reliably when in PTP mode. Possibly, the KST will be updated in the future with functions
to allow for this (see chapter 7).

Topic Name Message Type
kuka/gripper_control std_msgs/Bool
kuka/moving_rt std_msgs/Bool
kuka/moving_ptp std_msgs/Bool
tf/kuka/flange_frame/home geometry_msgs/TransformStamped
tf/kuka/tool_frame/home geometry_msgs/TransformStamped
tf/kuka/flange_frame/measured geometry_msgs/TransformStamped
kuka/flange_force geometry_msgs/Vector3Stamped
kuka/flange_torque geometry_msgs/Vector3Stamped
kuka/joint_positions kuka_msgs/jointPositions
kuka/joint_torques_external kuka_msgs/jointTorquesExternal
kuka/joint_torques_measured kuka_msgs/jointTorquesMeasured

Table 2.3: ROS messages published by the KUKA control node

To move the robot using the KUKA control node a stream of ROS geometry_msgs/TransformStamped
messages from kuka/base_frame to kuka/tool_frame/desired should be published to the
ROS network. This is the only topic the ROS node subscribes to.



24 CHAPTER 2. KUKA CONTROL NODE

2.1.5 KUKA Configuration File

The following parameters have to be set in the configuration file called kuka_params_ptp.yaml
or kuka_params_rt.yaml depending on the control script you are using. The parameters must
be uploaded to the ROS parameter server before running the control scripts. This can be done
with the included launch files kuka_params_ptp.launch or kuka_params_rt.launch. The pa-
rameters’s units are meters, degrees and seconds.

Mode Parameter Name Default Note
both robot LBR7R800 LBR7R800 or LBR14R820
both flange MF_elektrisch MF_elektrisch, MF_pneumatisch,

MF_IO_pneumatisch or
MF_touch_pneumatisch

both ip 172.31.1.147 robot ip
both center_line [1, -1, 0 ] z must be zero
both opening_angle 50.0 range (0, 180)
both z_lower_limit 0.2 range (0.1, z_upper_limit)
both z_upper_limit 0.6 range (z_lower_limit, 1.14)
both inner_sphere_limit 0.5 range (0.4, outer_sphere_limit)
both outer_sphere_limit 0.7 range (inner_sphere_limit, 0.8)
both tool_length 0.106 range [0, inf)
both time_out 0.2 move home after time_out
both home_pos [-45, 30, 0, -80, 0, 70, 0] disregard if use_home_pos false
both use_home_pos false use home_pos param or not
rt velocity_ptp_slow 0.15 range (0, 1)
rt velocity_ptp_fast 0.25 range (0, 1)
ptp velocity_ptp 0.15 range (0, 1)
ptp joints_thresh 0.5 if below not moving

Table 2.4: KUKA configuration parameters

The time_out parameter specifies after what time the robot moves back to its home position if
the KUKA node does not receive any more new tf messages. The node always measures the
time from the last received ROS time stamp. If a "new" message is received (i.e. time stamp
differs from previous message) the timer is reset. If you set the time_out parameter to a high
number (e.g. 999999 seconds) the robot will stay in position that corresponds to last message
and not move home until the set time_out is reached. When you publish new tool transforms to
the KUKA control node, be sure that the pose is close to the one when you left off. In future work
the robot should rather do a PTP motion to the new pickup point (see chapter 7).

In the current state of the software it is only possible to define the tool length and not a full
transformation matrix from flange to tool. This is to keep calculations of the home pose simple.



2.1. GENERAL 25

The tool length is measured along the flange’s Z axis. Since the tool is fixed to the flange, the
rotation of flange and tool is identical. If a tool length of 0 is set the flange frame will be controlled.

It is the operators responsibility to ensure that using the provided parameters the robot can reach
all positions in the workspace. If the robot can not reach a position it will stay in its previous pose.

2.1.6 Workspace Definition

Since the working envelope of the KUKA robot follows the shape of a hollow sphere (grey area
in Figure 2.6) it was decided that the workspace boundary should be a segment of this spherical
shape. The workspace of the robot is defined by the parameters center_line, opening_angle,
z_lower_limit, z_upper_limit, inner_sphere_limit and outer_sphere_limit. Figures 2.6
and 2.7 show an overview of what the individual workspace parameters mean.

It is encouraged to visualise the workspace with the Matlab script workspacePlotter.m before
editing the configuration file. Figure 2.8 shows a workspace plot. For the plot many random
positions are sampled and then constrained using the function getConstrainedPosition.m,
which is also used in the control scripts. The visualisation also shows the calculated workspace
center and the home pose of both the tool and flange frame. The tool tip (center of frame) always
coincides with the workspace center (red dot in Figure 2.8) when the robot reaches its home
position. Also view Figure 2.9 to see the visualisation of another possible workspace.

Please see the below conventions for coordinate systems (Figure 2.10) and joint conventions
(Figure 2.11) which are used throughout this software. The KUKA manual describes the joint
convention as follows. "The positive direction of rotation of the robot axes can be determined
using the right-hand rule. Imagine the cable bundle which runs inside the robot from the base to
the flange. Mentally close the fingers of your right hand around the cable bundle at the axis in
question. Keep your thumb extended while doing so. Your thumb is now positioned on the cable
bundle so that it points in the same direction as the cable bundle runs inside the axis on its way
to the flange. The other fingers of your right hand point in the positive direction of rotation of the
robot axis" [1, p. 87].

For labelling axes the standard "XYZ-RGB" convention is used in this report.

1. X axis corresponds to red color

2. Y axis corresponds to green color

3. Z axis corresponds to blue color



26 CHAPTER 2. KUKA CONTROL NODE

z upper limit

z lower limit

outer sphere radius
inner sphere radius

center of sphere

Figure 2.6: Workspace parameters (side view) [2, p. 36]

center line

opening angle

Figure 2.7: Workspace parameters (top view) [2, p. 36]



2.1. GENERAL 27

Figure 2.8: Workspace plot (center line [2,-1,0], opening angle 50 deg)

Figure 2.9: Workspace plot (center line [1,0,0], opening angle 120 deg)



28 CHAPTER 2. KUKA CONTROL NODE

Figure 2.10: Coordinate systems [1] Figure 2.11: Joint convention [1]

2.1.7 Enforcing Workspace Boundary

During execution of the control scripts the getConstrainedPosition.m function is used to limit
the position of the tool. There are four main parts to the enforcement of the workspace boundary.

1. If the desired tool position is above/below the allowed Z limits the constrained position
is projected down/up along the shortest path to the allowed Z limit (shortest path is always
along z axis). The range of motion in the XY plane is not restricted unless no other boundary
constraint is enforced.

2. If the desired tool position is further from/closer to the origin of joint 2 than the allowed
spherical limits the position is projected back to a valid position along a vector pointing
perpendicular from the z axis to the desired position.

3. If the desired tool position is beyond the planes which are defined by the center line and
the opening angle, the position will be projected down to the closest valid point on the
workspace boundary (along normal of these planes).

4. If the desired tool position lies within any of the red areas in figures 2.6 and 2.7 (i.e. in
negative center line direction or in negative z direction) an error is thrown. This is a safety
precaution as positions that lie within these areas are unfeasible and might potentially be
dangerous. If the control scripts recognise such an error the application is shutdown.



2.1. GENERAL 29

2.1.8 Home Position Calculation

In this software the home pose is always the idle position that the robot reaches when the appli-
cation is started. The zero position is the position in which the arm is fully stretched out (i.e. joint
positions [0, 0, 0, 0, 0, 0, 0]). This position is reached when the script successfully shuts down.

Note that the home position is not calculated if the parameter use_home_pos equals to true.
If it equals to true the system will take whatever home position is specified by the home_pos
parameter. The given home position must lead to a tool position that lies within the defined
workspace. The workspace center parameter is set to the cartesian tool home position (as the
software scales around this point). The workspace center is uploaded to the ROS parameter
server by the control script and hence becomes visible to other nodes.

If the use_home_pos parameter equals to false, the home position will be calculated from the
workspace definition and corresponding to the below constraints.

1. Tool position must coincide with workspace center

2. Tool Z axis must point downwards

3. Tool X axis must align with workspace center line

4. All joints must lie in plane spanned by center line and KUKA Z axis

5. Joints 3, 5 and 7 are fixed (i.e. 0)

The following paragraphs describe how the workspace is calculated if the use_home_pos param-
eter equals to false. Firstly, the workspace center is calculated like Figure 2.12 shows. The
function getJointsHome.m computes the home pose from the workspace center and the above
constraints. It simplifies the inverse kinematics problem to a 2R planar robot. Joint position 1
is calculated such that the rotation axis of joint 2 is perpendicular to the simplification plane in
Figure 2.13. The simplification plane is spanned by the specified center line and the KUKA Z
axis. Joint position 2 and 4 are calculated such that joint 6 lies in its correct position (above
workspace center). The elbow up solution is chosen. Joint 6 is calculated such that tool Z axis
faces downwards.

The script throws an error when the given workspace parameters would lead to a non-reachable
home pose. A reason for this might be that the tool length that was specified is too long.



30 CHAPTER 2. KUKA CONTROL NODE

upper z limit

lower z limit

outer sphere limit inner sphere limit

J2

base

Figure 2.12: Calculation of workspace center

Since a 360 degree variability is required but the limits of joint 1 are +/- 170 degrees two cases
are distinguished (see Figure 2.13). If the center line points in the positive X direction (including
[0,1,0] and [0,-1,0]) the home position will resemble the left picture (also see Figure 2.14). If the
center line points in the negative X direction the home position will resemble the right illustration
(also see Figure 2.15). Depending on which home pose is initially calculated (tool X axis points
towards or away from base frame) the operator needs to publish the correct desired tool frame
transform to the system.

J1, B

J2

J3

J4

J5

J6

J7
G

simplification plane

center line

J1, B

J2

J3

J4

J5

J6

J7

G

simplification plane

center line

Figure 2.13: Calculation of home position



2.1. GENERAL 31

Figure 2.14: Home position with center line [1,0,0]

Figure 2.15: Home position with center line [-1,0,0]



32 CHAPTER 2. KUKA CONTROL NODE

2.1.9 Custom Home Pose

Seeing that depending on the application (and mounting position of the KUKA) some users may
prefer a custom home pose as opposed to the calculated one, the KUKA control nodes offer
an option to specify a custom home position in joint space. Simply enter the desired custom
home pose in the configuration file under the parameter home_pos. To use this home pose the
use_home_pos parameter must be set to true. Otherwise the robot will calculate the home pose
as described in subsection 2.1.8. As described earlier the reference point for scaling in the control
scripts is the workspace center. Again, the workspace center parameter is set to the tool tip in its
home pose.

To find a home position that is suitable for your task consider moving the robot in the desired
position using the KUKA touch pad and then simply transferring the displayed joint values to the
config file. Please note that it is the operators responsibility to ensure that the tool position in the
specified home pose is within the given workspace boundary. Consider adjusting the workspace
boundary to fit your custom home position. The script will throw an error if you fail to set a home
position inside the boundary. Again, for visualisation the Matlab script workspacePlotter.m can
be helpful. See Figure 2.16 for an example (note the tilted tool transform and the workspace
center).

Figure 2.16: Plot of workspace custom home position [-45, 20, 0, -100, 0, 40, 0]



2.1. GENERAL 33

2.1.10 Control Loops

Algorithm 1: PTP control loop

1 while true do
2 if exit_app_emergency then
3 return;

4 else if exit_app then
5 break;

6 if control active then
7 if time out and not at home then
8 PTP motion to home position;
9 else

10 get tool transform;
11 scale position;
12 enforce workspace boundary constraints;
13 solve inverse kinematics;
14 check solution validity;
15 if movement above threshold then
16 PTP motion to calculated joint position;

17 else if control inactive and not at home then
18 PTP motion to home position;

19 publish robot state;

In line 15 of Algorithm 1 it is checked whether the individual joint movements to the received
pose are bigger than a certain threshold (can be set in the configuration file under parameter
joints_thresh). The idea behind this is that if the ROS node receives a noisy transform signal
the robot does not do PTP movements back and forth unless a threshold is surpassed. If every
new transform message should be executed the parameter should be set to 0.



34 CHAPTER 2. KUKA CONTROL NODE

Algorithm 2: Real-time control loop

1 while true do
2 if exit_app_emergency then
3 return;

4 else if exit_app then
5 break;

6 if control active then
7 if time out and not at home then
8 PTP motion to home position;
9 else

10 get tool transform;
11 scale position;
12 enforce workspace boundary constraints;
13 solve inverse kinematics;
14 check solution validity;
15 if not mirroring and at home then
16 if big jump then
17 PTP motion to pick-up pose;
18 else
19 start real-time control directly;

20 else if mirroring then
21 real-time motion to calculated joint position

22 else if control inactive and not at home then
23 PTP motion to home position;

24 publish robot state;

Line 16 of algorithm 2 checks whether the movement from the home position to the pick-up pose
(i.e. the first tool transform received) surpasses a certain threshold (set to 2 degrees for each
joint in the Matlab code). If the threshold is surpassed (e.g. because the input device is not well
calibrated with the home tool pose), then a PTP movement is done to the pick-up pose, to avoid
an abrupt start. Otherwise the node enters real-time mode directly.

In both scripts the timeout is adjustable in the configuration file under parameter time_out. If
no new transformation message is published to the script for longer than the time out allows, the
robot will move to its home position. While the time out is not yet expired, it will stay in the pose
which was last published to the ROS network.



2.1. GENERAL 35

2.1.11 Running Control Scripts

This is the standard workflow to use the ROS control nodes, written in an instructional format.

1. Update configuration file (kuka_params_rt.yaml or kuka_params_ptp.yaml) to your needs.
Consider visualising the workspace definition first using the workspacePlotter.m.

2. Make sure the defined workspace is clear and no obstacles are within it.

3. Boot the robot, establish ethernet connection and start MatlabToolboxServer application on
KUKA robot controller in automatic mode.

4. Upload workspace configuration parameters to ROS parameter server. You can use the
included launch files named kuka_params_rt.launch or kuka_params_ptp.launch for
this, depending on which workspace you want to upload.

5. Run Matlab nodes for the control method you need (either realTimeController.m or
ptpController.m).

6. Robot now moves to calculated (or otherwise specified) home pose.

7. Activate the control mode via a ROS service call to kuka/kuka_control or via the GUI.

8. Robot starts to listen to the tf/ topic.

9. Make sure you publish the right tool transformation depending on if the tool’s X axis points
towards or away from the base. Refer to Figure 2.13 for more information on this.

10. Publish on the tf/ topic. You need to provide the transform from kuka/base_frame to
kuka/flange_frame/desired. Make sure every message contains an updated time tag.

11. Robot moves to specified tool transforms.

12. If you activate the gripper control (using the kuka/gripper_control service or the GUI) a
corresponding boolean flag is published on the kuka/gripper_control topic.

13. Switch the KUKA control off with the service kuka/kuka_control or the GUI when you do
not need it anymore. The robot moves home. You can reactivate it anytime.

14. When done, exit the application with the kuka/exit_app service or the GUI. Robot moves
to zero position and terminates connection to KUKA robot.



36 CHAPTER 2. KUKA CONTROL NODE

You should pay attention to these things while using the ROS KST interface.

• If you are in real-time mode and the first transform you send is far away from the home
position (in joint space) the robot will perform a PTP movement to the pick-up position.
From this point onwards all further transforms are executed in real-time mode. This should
avoid abrupt starts if the initial tool transform you send does not lie in the close vicinity of
the home configuration (e.g. due to miscalibration). However, if the first transform you send
is sufficiently close to the tool home transform the robot will execute in right real-time mode
straight away.

• For the real-time control mode a frame rate of at least 50 Hz is recommended. For the PTP
mode the frame rate can be lower. However, make sure that the frame rate is high enough
such that timeout threshold is not reached. If the Matlab ROS node does not receive any
new tf/ messages for longer than the threshold allows, it will move to its home position.

• This is especially relevant in real-time mode: it is your responsibility to do adequate fil-
tering of the transform message before sending the transforms to the control node. A
sequence of good transform messages for the real-time node should form a smooth trajec-
tory. For example, this can be achieved by simple averaging filters or more complex Kalman
filters. The KUKA control node simply executes the received transform messages and does
not filter.

• If in your task it is cumbersome to Figure out the full transformation from the KUKA base
frame to the desired tool frame you could control the robot relative to its home pose. The
home pose of both the flange and the tool in the base frame are constantly published
to the ROS tf tree. These fixed transforms are called kuka/flange_frame/home and
kuka/tool_frame/home respectively.

• The ptpController.m always moves with the relative velocity specified in the parameter
velocity_ptp of the PTP configuration file.

• The realTimeController.m moves to its home position (beginning) and zero position
(end) with velocity_ptp_slow. All PTP movements in the meantime (i.e. back to home
position when no more new data is incoming or when KUKA control stopped) are executed
with relative velocity velocity_ptp_fast.

• In both the real-time mode and the PTP mode, the ROS node will disregard any incoming
transform messages that are sent while the robot is executing a motion. It will only listen
to the most recent transform message on the tf tree, once its previous movement was
executed.

• All movements are scaled around the tool tip in the home position if your scaling factor
does not equal to 1. Remember: using the calculated home pose, this corresponds to the
geometrical workspace center (see Figure 2.12). Using a custom home pose the movement
will be scaled around the tool position in the given home position.



2.2. LEAP MOTION 37

• If you wish to deactivate all workspace constraints in a control script look for the function
call of getConstrainedPosition and delete it. Note: deactivating the workspace boundary
might be dangerous. The robot can move freely and will execute any transform you send
unless it is not executable by the robot.

2.2 Leap Motion

2.2.1 Leap Configuration File

The configuration file is called leap_params.yaml and is part of the leap_kuka ROS package.

Paramater Name Default Note
z_clearance 0.15 remaining hand offset when lower z limit reached
box_dimensions [0.2, 0.2, 0.2] dimensions of interaction box
buffer_size 10 size of averaging buffer
start_tol_pitch 20 tolerance for hand pitch at pick-up
start_tol_roll 20 tolerance for hand roll at pick-up
run_tol_yaw 25 tolerance for hand yaw while running
run_tol_pitch 25 tolerance for hand pitch while running
run_tol_roll 25 tolerance for hand roll while running
min_confidence 0.05 do not use data if below minimum confidence

Table 2.5: Leap Motion configuration parameters



38 CHAPTER 2. KUKA CONTROL NODE

2.2.2 Coordinate Systems

In this software the hand coordinate system is defined as follows (see Figure 2.17). The coordi-
nate system definition is exactly the same for right and left hand (see Figure 2.18).

1. X axis: hand direction vector as defined by Leap Motion

2. Y axis: completes right handed coordinate system

3. Z axis: palm normal vector as defined by Leap Motion

Figure 2.17: Hand coordinate system [5]

Figure 2.18: Coordinate systems of left hand right hand [5]

Figure 2.19 shows how the leap motion reference frame is defined. It is important to note that the
image in Figure 2.19 is only correct if users put in their first hand with finger tips pointing towards
the green LED. If the option "Auto-orient Tracking" in the settings of the LeapControlPanel is
activated the Leap Motion flips its Z axis depending on which side the user is entering the tracking
volume, such that the Z axis always points towards the user’s finger tips. This was taken account
during the development of the Leap KUKA node.



2.2. LEAP MOTION 39

Figure 2.19: Leap Motion coordinate system [5]

2.2.3 Coordinate Transformations

A major part of this project is the investigation of teleoperation techniques using gesture tracking.
The Leap Motion tracking device is used to control the KUKA real-time ROS node presented
earlier. Figure 2.20 shows an overview of the general idea of the ROS node: The Leap Motion is
virtually placed in some convenient location and orientation such that the position and orientation
of the detected hand received in the Leap Motion reference frame can be directly mapped to the
desired tool pose in the KUKA base frame.

virtual leap motion

adjusted hand

base

tool

Figure 2.20: Coordinate transformations overview



40 CHAPTER 2. KUKA CONTROL NODE

Table 2.6 shows a list of all transformations published by the leap_kuka node. The following
paragraphs explain how each of the transformations is obtained.

From To
kuka/base_frame leap_motion/virtual_frame
leap_motion/virtual_frame hand/frame
leap_motion/virtual_frame kuka/tool_frame/desired
leap_motion/virtual_frame kuka/flange_frame/desired

Table 2.6: Transformations published by leap_kuka node

leap_motion/virtual_frame

The calculation of the transform from KUKA base to virtual Leap Motion relies on two ideas. The
position of the Leap Motion lies directly below the workspace center (i.e. tool home position). The
Z offset from the workspace center is the distance between workspace center and lower Z limit
plus the Leap Motion clearance parameter. A graphical overview of this is given in Figure 2.21.
As the workspace center must be known before the virtual Leap Motion position can be calculated
it must be uploaded to the ROS parameter server before launching the Leap KUKA node. This is
done by the control scripts presented earlier.

workspace center

virtual leap motion

leap motion 
clearance

Figure 2.21: Position of Leap Motion in KUKA base frame

Furthermore, the orientation of the Leap Motion is determined by two constraints. Firstly, the Leap
Motion Y axis must be parallel to the KUKA Z axis. Secondly, the Leap Motion must be rotated
around its Y axis such that the XY components of the first detected hand’s direction vector points
in same direction as the center line. This means that the hand frame measured by the Leap



2.2. LEAP MOTION 41

Motion and the fixed hand frame in Figure 2.22 must line up. Therefore it is completely arbitrary
with which yaw angle the user’s hand approaches as the Leap Motion will always be rotated
around its Y axis to fulfil the second constraint. Please note that users should actually align their
hands with the robots center line when using the system. Otherwise the control of the robotic rig
might feel unintuitive.

base

virtual leap motion

center line

fixed hand

known

unknown

known

Figure 2.22: Transformation to virtual Leap Motion

hand/frame

The hand frame is simply the transform determined from data which the Leap Motion collects
about the hand. The transform is computed from the hand’s X, Y and Z axes (refer to Figure 2.17)
and the palm’s center position.



42 CHAPTER 2. KUKA CONTROL NODE

kuka/tool_frame/desired

As mentioned earlier the measured hand frame should be mapped to the desired tool frame. The
position of the desired tool frame always equals the position of the measured hand.

The orientation includes a further step. Since the measured hand might exceed the running
tolerances specified in the Leap Motion configuration file an adjusted hand frame is introduced
(which is not published to the tf tree). The adjusted hand frame equals the measured hand frame
if yaw pitch and roll are within the running tolerances. However, if the measured hand exceeds the
allowed yaw, pitch or roll the hand’s orientation must be adjusted as depicted in Figure 2.23. Yaw,
pitch and roll are measured around the fixed hand frame. If any of the yaw, pitch or roll constraints
are exceeded the adjusted hand’s rotation is simply the measured hand’s rotation with adjusted
values (which if exceed correspond to the maximum allowed rotation and otherwise represent the
measured hand’s rotation).

virtual leap motion

fixed hand

known
known

unknown

adjusted hand measured hand

Figure 2.23: Transformation to desired KUKA tool pose

It is assumed that the automatic home pose calculation feature from section 2.1.8 is used. De-
pending on where the center line points the home tool orientation with respect to the base can
look different (refer to Figure 2.13). Depending on where the center line points the adjusted hand’s
frame is rotated 180 degrees around its Z axis and then published to the tf tree.



2.2. LEAP MOTION 43

kuka/flange_frame/desired

The desired flange frame is simply the tool frame translated by the specified tool length along its
negative z axis. It is not used to control the KUKA robot, but still published for completeness.

Figure 2.24 shows a final overview of the frames published by the Leap KUKA node (except the
flange frame for better visibility). Note how the rotation of the hand/frame exceeds one of the
rotational constraints and the kuka/tool_frame/desired frame is rotated less. The position of
both frames coincides.

Figure 2.24: Frames published by leap_kuka node viewed in RViz

Things users should pay attention to when using the leap_kuka ROS node.

• To start publishing the desired tool frame put a hand inside a virtual interaction cube above
the Leap Motion. Keep hand horizontal (within specified tolerances). Leap Motion orienta-
tion on table does not matter. Node uses a FIFO queue for averaging of data. Once enough
data for the averaging process is collected node publishes the desired tool transform.

• The system does not distinguish between left or right hands. You can use either hand.

• If two hands are detected the system always regards the hand which has been visible the
longest.

• Switch "Auto-orient Tracking" in LeapControlPanel settings on to take leverage of full capa-
bility of ROS node. If switched off, the Leap Motion only recognizes hands coming in from
one lateral side.

• If for debugging purposes (never for control!) you would like to run the Leap KUKA node in-
dependently you can do so using the leap_kuka_debug.launch launch file. Note that in or-
der to make the node run independently this file uploads default values for the center_line
and ws_center arguments - hence only use it for debugging and visualisation.





3 Robotic Hand Node

3.1 General

The ReFlex Takktile robotic hand by RightHand Robotics is a 4 degree of freedom force sensitive
robotic gripper. It can be conveniently controlled through the ROS driver which is included in
the modules folder. Before attempting to control the robotic hand make sure that the networking
setup (see section 1.4) was completed successfully. Below is the workflow for controlling the
robotic hand.

1. Power robotic hand.

2. Establish valid ethernet connection.

3. Type roslaunch reflex reflex_takktile.launch in a terminal to launch the robotic
hand’s ROS driver.

4. Calibrate the hand before using it (especially before first usage) by calling the services
reflex_takktile/calibrate_fingers and reflex_takktile/calibrate_tactile.
The calibration results will be stored in a directory inside the hand ROS driver. Make sure
the hand is in an adequate zero position (i.e. fingers stretched out) before calibrating.

5. Publish to the right closure angles to the topic reflex_takktile/radian_hand_command.
The message must be of type RadianServoCommands and consists of four numbers in the
order [index, middle, thumb, spread]. The opened hand command corresponds to [0, 0, 0,
0] and a closed hand command would correspond to [2, 2, 1.8, 0].

3.2 Leap Motion

The Python script leap_hand.py forms a ROS node to control the robotic hand intuitively using
the Leap Motion gesture tracking device. The control node calculates four angles from vectors
that it constructs starting from the palm center position. In Figure 3.1 alpha represents the index
finger flexion, beta the middle finger flexion and gamma the thumb flexion angle. Angle delta (not
in figure) represents the spread between index and middle finger.

45



46 CHAPTER 3. ROBOTIC HAND NODE

⍺
β

ɣ

Figure 3.1: Human flexion angles [6]

1. alpha: angle between palm normal and vector to index finger tip

2. beta: angle between palm normal and vector to middle finger tip

3. gamma: angle between palm normal and vector to thumb tip

4. delta: angle between vectors from palm center to center of intermediate bones

Once the leap_hand.py node calculated the human flexion angles it maps the measured angles
to the minimum and maximum specified flexion angles of the robotic hand. This allows for smooth
opening of the individual fingers (as opposed to simple open/close movements). If no hand is
detected the robotic hand flexion equals is set to the open pose. The array of robotic hand flexion
angles is published to the reflex_takktile/radian_hand_command topic. The script works with
either hand.



4 Tips and Tricks

4.1 Leap Rig Demo

These are short instructions for users that would like to show the demo of Leap Motion control
of the robotic hand and the KUKA robot. These instructions may repeat information previously
presented in the report.

1. Adjust configuration files kuka_params_rt.yaml and leap_params.yaml to your needs
(especially consider reading through subsection 2.1.6 on the workspace definition).

2. Setup system as shown in Figure 1.2 (robot, hand and computer connected via ethernet
through a switch and Leap Motion connected to computer using USB)

3. Start KUKA Robot with green toggle on robot controller. Wait for it to boot.

4. On the KUKA touch pad, press "Applications" in the top left and click on the application
"MatlabToolboxServer".

5. Mount and power the Robotic Hand. Make sure that its fingers are in a flat (i.e. opened)
position as this will be its zero position.

6. Establish network connection to KUKA and robotic hand by clicking on the devices in "Eth-
ernet Networks" in the top right corner. If you click on "kuka" or "hand" it should say "Con-
nection Established".

7. Make sure the defined robot workspace is clear.

8. Run the application on the KUKA touch panel by clicking green arrow pointing to the right
(button is on the left of the touch pad). Make sure that you are in automatic mode. This can
be changed by twisting the black knob in the top of the touch panel in a horizontal position.
Change the mode to AUT if necessary and turn it back.

9. Navigate to the leap_rig/shell folder and launch both shell scripts in listing 4.1. Note
that if your workspace is not called catkin_ws you must adjust the path to your workspace
name in the run_leap_control.sh script.

10. Once the robot moved to its home position, activate KUKA control and robotic hand control
by ROS service calls or with the "ROS Control" toggles in the Matlab GUI.

47



48 CHAPTER 4. TIPS AND TRICKS

11. Put hands inside a virtual interaction cube which sits above the Leap Motion. Keep hand
horizontal. Leap Motion orientation on table does not matter. Once enough data for the
averaging process is collected the robot will start mirroring the hand motions.

12. Switch the KUKA control off with the service kuka/kuka_control or the GUI when you do
not need it anymore. The robot moves home. You can reactivate it anytime.

13. When done, exit the application with the kuka/exit_app service or the GUI. Robot moves
to zero position and terminates connection to KUKA robot.

Listing 4.1: Launching Leap Rig demo

cd ~/ catk in_ws / src / l eap_ r i g / s h e l l
. / run_leapd . sh
. / run_ leap_con t ro l . sh

Please consider this when running the demo.

• Consider running the Diagnostic Visualiser when clicking on the LeapControlPanel (green
rectangle in top left corner). It gives a nice demo of the Leap Motion system to people who
are not yet familiar with it.

• When someone is controlling the robot always have hand on the KUKA emergency stop
button.

• Should you leave the robot unsupervised press the emergency stop button or switch the
robot off.

• You might want to increase the buffer size of the averaging queue of the Leap KUKA node
in its configuration file. This will make the robot less responsive and lead to a smoother
trajectory.

• Before switching the KUKA "ROS Control" on explain, that users have to put their hand
inside a virtual cube above the Leap Motion to "pick up" the robot. Their hand has should
be horizontal and still when put inside the interaction box. Further, their hand and forearm
should be parallel to the robot arm to ensure intuitive control.

• Before letting others control the robot, let them get a feeling for the system by only letting
them control the Robotic Hand first. Explain, that only the thumb, index and middle finger
are used to control the hand. The other fingers should be as straight as possible. The
reason for this is that if users make a fist, the Leap Motion will produce a noisy signal for
hand position, direction and normal from which the tool transformation is calculated.



4.1. LEAP RIG DEMO 49

The following is a summary of safety features of the software setup.

• Robot performs a safety stop if it senses a cartesian torque of 25Nm or higher.

• The maximum end effector velocity is set to 800mm/s. Robot performs safety stop if this
velocity is exceeded. The maximum torque and velocity are specified in the KUKA project
which is synchronised to the controller (view KUKA Sunrise Workbench documentation).

• To start the Leap Motion control of the robot, the operator has to actively press the toggle
"ROS Control". Only if this button is active, the system will pick up the data from the hand
inside the cube and start mirroring (i.e., real-time control).

• To operate the robot users have to put their hands inside a virtual cube directly above
the Leap Motion. This ensures that the system is starting tracking in an area that is well
perceived by the Leap Motion and signal noise is kept to a minimum.

• At startup users have to put their hands in a horizontal position. Tolerances are specified in
the Leap Motion configuration file. This ensures that the robot tool moves to a reasonable
position and orientation in a controlled manner.

• Very fast hand movements are compensated for in averaging process.

• At all times during mirroring, the software limits yaw, pitch and roll to a specified value in
the Leap Motion configuration file.

• Emergency button in Matlab GUI instantly stops script. Don’t press unless in an emergency.
Use "Exit Application" for safe exit and return to zero position.

• All positions that would be sent to the robot are checked. If they are not inside the workspace,
they are clipped to the workspace boundary.

• If any position is "very" infeasible (i.e., negative KUKA z axis or in negative center line
direction) the program throws an error and terminates.



50 CHAPTER 4. TIPS AND TRICKS

4.2 Troubleshooting

• If the robot stops while mirroring your hand movements, you probably exceeded the maxi-
mum end effector velocity (800mm/s). Pressing the "run" button (green triangle pointing to
the right) should continue the session. You might want to increase the averaging buffer size
to make the robot’s movements less responsive.

• "Error using KST/net_establishConnection": If this error shows in Matlab, check the
ethernet cables and make sure that you are actually connected to the robot in "Ethernet
Networks" in the top right corner. If you press "kuka", your computer should say "Connection
Established". Also make sure the MatlabToolboxServer is running on the robot controller. It
shuts down again after a while if no connection request is made.

• "No KRC connection possible": If this error message shows on the KUKA touch panel after
booting, try rebooting the robot. Ideally, unplug the robots ethernet cable from the switch
before booting. The error should then be resolved.

• "Could not attach tool to the flange": You get this error message from the KUKA Sunrise
Toolbox if the previous connection to the robot was not successfully shut down (happens if
"Emergency Stop" in Matlab is performed). Reboot the robot.

• Java Bind Exception: If you get this message on the robot panel, this means your previous
connection to the robot did not terminate successfully. Reboot the robot.

• Robot does not start mirroring: Check if the toggle "ROS Control" in the KUKA Panel of
the GUI is activated and your hand is in a horizontal position and inside the interaction box.
Also make sure that the Leap daemon is running. You could use the Diagnostic Visualizer
(right click on green rectangle, LeapControlPanel needs to be running) to check if the Leap
Motion is actually detecting a hand. If it does not, but it should, try relaunching the Leap
daemon.

• No Connection to robotic hand possible: Make sure the power cable is plugged into the
Robotic Hand. Unfortunately it does not always sit in place firmly. As with the KUKA make
sure that your ethernet cable is correctly plugged in and you have a valid connection under
"Ethernet Networks".

• If robot detected resistant force: The robot will pause the application running on the KUKA
controller. You should be able to press the green button and unpause the motion. If that
does not work or the robot ran into more problems, you might need to restart it.

• Other unexpected behaviour: Check the command window in Matlab, you might find valu-
able information there.



4.3. LEAP MOTION DETAILS 51

4.3 Leap Motion Details

Figure 4.1: Leap Motion diagnostic visualizer

Figure 4.2: Leap Motion workspace [8]



52 CHAPTER 4. TIPS AND TRICKS

4.4 ROS Commands

Listing 4.2: Useful ROS commands

rosc lean purge
rosparam l i s t
rosse rv i ce l i s t
r o s t o p i c l i s t
rosrun t f view_frames
r o s t o p i c echo topic_name
roscore
rqt_image_view
rosrun r v i z r v i z
c a t k i n b u i l d
ros launch pkg_name f i le_name . launch



5 Vision

5.1 Virtual Reality

To start VR support simply plug in the RGB-D camera and the Oculus. Make sure that the Oculus
is detected as an external display by launching the nvidia-settings utility from the command line
if necessary. The Ubuntu home screen should be displayed in the Oculus if correctly connected.
Then simply launch the following script, which wires all drivers and topics up such that the video
published by the camera will be displayed in the Oculus Rift. Figure 5.1 shows what is displayed
inside the Oculus Rift. When the HMD is worn the two images blend together to form a single
image.

Listing 5.1: Launching virtual reality node

roslaunch v i s i o n camera_oculus . launch

Figure 5.1: Workspace as viewed inside the Oculus

53



54 CHAPTER 5. VISION

5.2 Visual Fiducial

Seeing that the long-term goal of this project is to investigate autonomous robotic grasping a
reference between the RGB-D camera and the robot must be established. A first attempt at
this is done using an AprilTag fiducial on a 3D printed marker panel. The camera recognises
a predefined AprilTag of known size and calculates its position and orientation from the camera
intrinsics. Whether this is sufficiently accurate for the purposes of autonomous robotic grasping
still needs to be investigated. Note that the AprilTag does not always need to be visible if the
calibration is done before starting the task. This is due to the fact that the transform from KUKA
base to camera does not change as both the camera and the KUKA are static in this scenario.
Also note how in Figure 5.2 the tag_frame exist in the tree but is currently not displayed.

Listing 5.2: Launching camera AprilTag node

roslaunch v i s i o n camera_apr i l tag . launch

Figure 5.2: Camera pose calculation in KUKA base frame



5.2. VISUAL FIDUCIAL 55

"AprilTag is a visual fiducial system, useful for a wide variety of tasks including augmented reality,
robotics, and camera calibration. Targets can be created from an ordinary printer, and the AprilTag
detection software computes the precise 3D position, orientation, and identity of the tags relative
to the camera. The AprilTag library is implemented in C with no external dependencies. It is
designed to be easily included in other applications, as well as be portable to embedded devices.
Real-time performance can be achieved even on cell-phone grade processors. The fiducial design
and coding system are based on a near-optimal lexicographic coding system, and the detection
software is robust to lighting conditions and view angle." [3]

view_frames Result

camera/rgb_frame

tag_frame

Broadcaster: /apriltag_ros_continuous_node
Average rate: 30.041 Hz

Most recent transform: 1568040922.532 ( 0.092 sec old)
Buffer length: 4.960 sec

camera/depth_frame

Broadcaster: /rgb_to_depth_broadcaster
Average rate: 10.192 Hz

Most recent transform: 1568040922.657 ( -0.033 sec old)
Buffer length: 4.906 sec

kuka/flange_frame/seen

Broadcaster: /tag_to_flange_seen_broadcaster
Average rate: 10.193 Hz

Most recent transform: 1568040922.660 ( -0.036 sec old)
Buffer length: 4.905 sec

kuka/flange_frame/measured

Broadcaster: /kuka_real_time_node
Average rate: 16.688 Hz

Most recent transform: 1568040922.662 ( -0.038 sec old)
Buffer length: 4.974 sec

kuka/base_frame

Broadcaster: /kuka_real_time_node
Average rate: 6.721 Hz

Most recent transform: 1568040922.609 ( 0.015 sec old)
Buffer length: 4.910 sec

kuka/tool_frame/home

Broadcaster: /kuka_real_time_node
Average rate: 6.696 Hz

Most recent transform: 1568040922.578 ( 0.046 sec old)
Buffer length: 4.928 sec

kuka/flange_frame/home

Broadcaster: /kuka_real_time_node
Average rate: 6.699 Hz

Most recent transform: 1568040922.583 ( 0.041 sec old)
Buffer length: 4.926 sec

Recorded at time: 1568040922.624

Figure 5.3: Tf tree when camera_apriltag and a KUKA control node running



56 CHAPTER 5. VISION

5.3 RGB-D Fusion

To merge the camera’s RGB data with its depth data a launch file was set up in the vision
folder. It uses the image_pipeline module. To launch the RGB-D fusion type in the following. A
preconfigured RViz window opens (see Figure 5.4) to inspect the fused data.

Listing 5.3: Launching RGB-D fusion nodes

roslaunch v i s i o n reg i s te r_ rgbd . launch

Figure 5.4: RViz showing fused RGB-D data

For autonomous grasping prediction using depth data (see chapter 6) a reference between the
KUKA base frame and the camera depth frame must be established. The approach used for
this estimation in this project currently is determining the cameras RGB optical frame using the
AprilTag library and then rigidly transforming to the depth optical frame of the camera. The merged
RGB-D data produced by this launch file could be used to get a more accurate estimate of the
tag transform relative to the camera depth frame. This might be a sensible approach:

1. Detect AprilTag using RGB camera

2. Get RGB pixels that correspond to the marker panel

3. Fuse with depth pixels

4. Reconstruct the transform from AprilTag to depth frame directly from landmarks (e.g. trans-
lation is depth pixel’s value of tag’s center and orientation could be calculated by construct-
ing a plane that intersects all four corners of tag)

It is worth investigating if higher accuracies can be achieved for the estimation of the depth frame
using this approach compared to the current one (see chapter 7).



6 Autonomous Grasping

This is a first attempt at investigating autonomous grasping using a RGB-D camera and neural
networks to process depth images. The proposed research question is whether the performance
of existing neural networks (such as presented in [4]) can be enhanced by a human in the loop.
Since an intuitive user interface for the KUKA robot and robotic hand has been developed in this
project it should be investigated whether performance scores can be improved using data that
was generated from the systems presented earlier in this report.

As a first step the pretrained neural network presented in [4] is used to get a first impression of
the accuracy of their system and potential areas of improvement. See the network architecture
of their so called generative grasping convolutional neural network (GGCNN) in Figure 6.1. Start
the code for grasping prediction with the terminal commands below. In the image viewer select
the desired prediction topic (e.g. ggcnn/img/grasp).

Figure 6.1: Network architecture of GGCNN [4]

Listing 6.1: Launching grasp prediction node

# i n a te rm ina l type
ros launch grasping grasping . launch
# i n a new te rm ina l type
conda a c t i v a t e grasping_py27 && rosrun grasping ggcnn . py
# when done
conda deac t i va te

57



58 CHAPTER 6. AUTONOMOUS GRASPING

Figure 6.2: RGB view Figure 6.3: Grasping point prediction

Figure 6.4: RGB view Figure 6.5: Grasping point prediction

The TransformStamped of the predicted grasping pose is also published (however with a fixed
rotation). It still needs to be investigated how to best estimate the tool orientation from the neural
network output (see chapter 7). To see how Morrison et al. work with the predicted data and
achieve closed loop control of grasping movements, it is recommended to check the code in the
"GGCNN Kinova Grasping" GitHub repository.

Since the neural network’s predictions are not very stable a post-processing filtering step should
be considered. An additional neural network which is appended to the existing one (Figure 6.1)
could serve this purpose. It is most sensible to work with the whole grasping "heat map" that
is produced by the first neural network (as opposed to just the final prediction) to not loose any
valuable abstraction the GGCNN makes. A second network could then use this preprocessed
data and predict the full transformation from camera depth frame to the grasping target. This
transform can then be transferred into the KUKA reference frame with a relation that has been
established with Hand-Eye calibration using the AprilTag fiducial.



59

Training the second neural network could be done using data that was collected using the Leap
Motion KUKA node. A dataset of possible grasping poses could be recorded from desired tool
transform which is continuously published by the Leap Motion KUKA node. If this is sampled at a
high frequency and paired with the corresponding GGCNN prediction a dataset for training of the
second network could be build up. The workflow for dataset collection could look like this.

1. Determine transform from KUKA base to camera depth frame

2. Choose one item to grasp (e.g. cup)

3. Place object in workspace and keep robot in home position

4. Keep camera on tripod and start GGCNN

5. Collect 1000 predicted heat maps of workspace (approx. 1 minute at 15 Hz prediction rate)

6. Use Leap KUKA node to generate 1000 possible grasping tool transforms (approx. 30
seconds at 30 Hz sampling rate)

7. Choose other objects and repeat steps 2 to 6

8. Train appended neural network with collected data

Image

D
ep

th
 Im

ag
e 

(3
00

 * 
30

0)

Heatmap

G
G

C
N

N

Transform

Ap
pe

nd
ed

 N
eu

ra
l N

et
w

or
k 

(C
N

N
)

D
es

ire
d 

To
ol

 T
ra

ns
fo

rm
(T

ra
ns

fo
rm

St
am

pe
d)

Figure 6.6: Enhanced GGCNN Overview





7 Future Work

Some ideas on future work:

1. Bug fix: if time-out is set very long and no new tool transforms are published to the KUKA
control node, the robot stays in the last position which it successfully received. Once new
information is published on the topic the robot tries to move there immediately using a real
time motion. This may cause problems when the jump is too big (hence we should rather
do a PTP movement if the jump is larger than a threshold). For now either leave the default
time-out and the robot will move safely to its home position once the signal is lost or be sure
to publish a pose which is close to the one where you left off.

2. Evaluate accuracy of AprilTag tracking using RGB optics. Is it sufficient for autonomous
grasping?

3. Calculate transform from depth optical frame to tag using approach in section 5.3 and com-
pare accuracy with RGB optics approach.

4. Control two robots using one Leap Motion. Only thing that needs to be changed is that two
interaction boxes need to be formed and both hands need to be processed (not only hand
which is visible the longest).

5. Further investigation of autonomous robotic grasping. Test the proposed approach to im-
prove GGCNN using a human in the loop.

6. Integration of force detection in robotic hand node. Limit grasping once pressure threshold
reached.

7. Depending on KST advancement, publish KUKA status in real-time mode. The KST cur-
rently only supports reliable status information (i.e. "getters") in PTP mode and not during
direct servoing.

8. Make more complex tool transforms possible (full (4,4) transformation matrix in configura-
tion file) and calculate home pose accordingly.

9. Determine virtual Leap Motion transform relative to tool home transform and not KUKA base
frame. Advantage is that this will adjust the virtual Leap Motion position if a custom home
pose is given in the configuration file. This would make the system even more modular (e.g.
for KUKA robots that are mounted on the ceiling or the wall).

61



62 CHAPTER 7. FUTURE WORK

10. Visualise interaction box, give users feedback if they are holding their hand in a valid starting
position and orientation.

11. Use calibrated DH parameters. The DH parameters used by the KST can be changed in
the function constDhDataOf7R800.m of the KUKA Sunrise Toolbox.



Bibliography

[1] KUKA Roboter GmbH. KUKA Sunrise.OS 1.11, KUKA Sunrise.Workbench 1.11. Operating
and Programming Instructions for System Integrators. 2016.

[2] KUKA Roboter GmbH. Media Flange. For Product Family LBR iiwa, Assembly and Operating
Instructions. 2016.

[3] APRIL Robotics Laboratory at the University of Michigan. AprilTags Visual Fiducial System.
URL: https://april.eecs.umich.edu/software/apriltag (visited on 09/09/2019).

[4] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Closing the Loop for Robotic Grasp-
ing: A Real-time, Generative Grasp Synthesis Approach”. In: CoRR abs/1804.05172 (2018).
arXiv: 1804.05172. URL: http://arxiv.org/abs/1804.05172.

[5] Leap Motion. API Overview. URL: https : / / developer - archive . leapmotion . com /
documentation/csharp/devguide/Leap_Overview.html (visited on 09/09/2019).

[6] Leap Motion. Hands. URL: https://developer-archive.leapmotion.com/documentation/
csharp/devguide/Leap_Hand.html (visited on 09/19/2019).

[7] M. Safeea and P. Neto. “KUKA Sunrise Toolbox: Interfacing Collaborative Robots With MAT-
LAB”. In: IEEE Robotics Automation Magazine 26.1 (2019), pp. 91–96. ISSN: 1070-9932.
DOI: 10.1109/MRA.2018.2877776.

[8] Peter Wozniak et al. “Possible applications of the LEAP motion controller for more interactive
simulated experiments in augmented or virtual reality”. In: Optics Education and Outreach
IV. Ed. by G. Groot Gregory. Vol. 9946. International Society for Optics and Photonics. SPIE,
2016, pp. 234 –245. DOI: 10.1117/12.2237673. URL: https://doi.org/10.1117/12.
2237673.

63

https://april.eecs.umich.edu/software/apriltag
https://arxiv.org/abs/1804.05172
http://arxiv.org/abs/1804.05172
https://developer-archive.leapmotion.com/documentation/csharp/devguide/Leap_Overview.html
https://developer-archive.leapmotion.com/documentation/csharp/devguide/Leap_Overview.html
https://developer-archive.leapmotion.com/documentation/csharp/devguide/Leap_Hand.html
https://developer-archive.leapmotion.com/documentation/csharp/devguide/Leap_Hand.html
https://doi.org/10.1109/MRA.2018.2877776
https://doi.org/10.1117/12.2237673
https://doi.org/10.1117/12.2237673
https://doi.org/10.1117/12.2237673

	List of Figures
	List of Tables
	Introduction
	Hardware Components
	Software Components
	Installation
	Networking Setup
	Folder Structure

	KUKA Control Node
	General
	Scripts Overview
	KUKA Motion Types
	Services of Control Scripts
	Topics of Control Scripts
	KUKA Configuration File
	Workspace Definition
	Enforcing Workspace Boundary
	Home Position Calculation
	Custom Home Pose
	Control Loops
	Running Control Scripts

	Leap Motion
	Leap Configuration File
	Coordinate Systems
	Coordinate Transformations


	Robotic Hand Node
	General
	Leap Motion

	Tips and Tricks
	Leap Rig Demo
	Troubleshooting
	Leap Motion Details
	ROS Commands

	Vision
	Virtual Reality
	Visual Fiducial
	RGB-D Fusion

	Autonomous Grasping
	Future Work
	Bibliography

