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ABSTRACT
A long-standing question in robot hand design is how accurate tactile sensing must be. This paper uses simulated tactile signals and the reinforcement learning (RL)
framework to study the sensing needs in grasping systems. Our first experiment investigates the need for rich tactile sensing in the rewards of RL-based grasp
refinement algorithms for multi-fingered robotic hands. We systematically integrate different levels of tactile data into the rewards using analytic grasp stability metrics.
We find that combining information on contact positions, normals, and forces in the reward yields the highest average success rates of 95.4% for cuboids, 93.1% for
cylinders, and 62.3% for spheres across wrist position errors between 0 and 7 centimeters and rotational errors between 0 and 14 degrees. This contact-based reward
outperforms a non-tactile binary-reward baseline by 42.9%. Our follow-up experiment shows that when training with tactile-enabled rewards, the use of tactile
information in the control policy’s state vector is drastically reducible at only a slight performance decrease of at most 6.6% for no tactile sensing in the state. Since
policies do not require access to the reward signal at test time, our work implies that models trained on tactile-enabled hands are deployable to robotic hands with a
smaller sensor suite, potentially reducing cost dramatically.

1. INTRODUCTION
In this paper, we use accurate tactile signals from
simulation and the reinforcement learning
framework to explore the tactile sensing needs in
robotic systems. We propose a unified framework
to systematically incorporate different levels of
tactile information from robotic hands into a reward
signal via analytic grasp stability metrics.
Furthermore, in Fig. 1 we hypothesize that policies
trained with grasp stability metrics on a robotic
hand Hf with a full tactile sensor suite are
deployable to structurally similar but more
affordable hands Hr with reduced tactile sensing at
a small performance decrease.
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Figure 1: The hypothesized workflow for training and
deploying RL-controlled grasping systems.

2. GRASP STABILITY METRICS
Mirtich and Canny [1] define two quality metrics ϵf
and ϵτ that measure a grasp’s ability to resist unit
forces and torques, respectively. We define
additional metrics. As shown in Fig. 2, δcur
measures current grasp stability as the average
magnitude of the safety margins f̄ i,cur to the friction
cone. Moreover, δtask measures expected grasp
stability during task execution by estimating the
task contact forces and their expected margins to
the friction cone. While ϵf and ϵτ are a function of
contact positions and normals, δcur and δtask also
take the actual contact forces that the contacts
currently apply to the object into account.
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Figure 2: Grasp with current contact forces f i,cur and
tangential force margins f̄ i,cur to the friction cones.

3. TACTILE SENSING AND REWARD
In our first experiment, we estimate the relevance of
contact position, normal, and force sensing for the
reward signal in robotic grasp refinement. Fig. 3
shows an overview of one grasping episode. In
stage (A), we initialize the world. Thereby, we
randomly generate a new object, wrist error tuple
(O,E). We vary the object O category (cuboid,
cylinder, sphere), mass, and dimensions.
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Figure 3: Overview of one algorithm episode. The weighting
factors of α1 = 5 and α2 = 0.5 were empirically determined.

We uniformly sample the translational wrist error
from [−5, 5] cm and the rotational error from
[−10, 10] deg for each axis, respectively. We add
the wrist pose error E to an optimal sideways facing
grasp pose to simulate calibration errors and close
the fingers of the robotic hand in the erroneous
wrist pose until the fingers make contact with the
object. Consequently, the grasp refinement
episode (B) starts. We split the grasp refinement
algorithm into four stages (Refine, Lift, Hold, End).
As shown in the table, we compare the following
reward configurations: (1) both ϵ and δ , (2) only ϵ,
(3) only δ and (4) the baseline β . Fig. 3 shows that
δ refers to δtask in the refine stage to measure
expected grasp stability before lifting and δcur in the
lift and hold stages to measure current stability.
Further, ϵ is a weighted combination of ϵf and ϵτ.
While these rewards provide stability feedback after
every algorithm step, the baseline β gives a sparse
reward after the holding stage, indicating if the
object is still in the hand (1) or not (0).

Figure 4: Test results for reward frameworks. We average
performance over 40 models trained with different seeds for
each framework. The error bars represent ±2 standard errors.

In Fig. 4, we find that combining the geometric
grasp stability metric ϵ with the force-agnostic
metric δ yields the highest average success rates.
The results demonstrate that information about
contact positions and normals encoded in ϵ
combines well with the force-based information in
the δ reward. This result motivates building
physical robotic hands capable of sensing these
types of information.

4. TACTILE SENSING AND STATE
Our second experiment gradually decreases tactile
resolution in the state vector to find realistic
training and deployment workflows for grasping
algorithms. We compare four contact sensing
frameworks. The full contact sensing framework
receives the same state vector as in the first
experiment (full force vector at each link, contact
positions, and normals, and joint positions). In the
normal framework, we only provide the algorithm
with the contact normal forces and omit the
tangential forces. In the binary framework, we only
give a binary signal whether a link is in contact (1)
or not (0). Finally, we solely provide the joint
positions in the none framework. The reward
function in these experiments is ϵ and δ from Fig.
3. Hence, all contact sensing frameworks receive
contact information indirectly via the reward.

Figure 5: Test results for contact sensing frameworks. Wrist
error case A means no translational and rotational wrist pose
offset. Case H means 7 cm translational and 14 deg rotational
L2 offset. Performance decreases for larger wrist errors.

Fig. 5 shows that the frameworks which receive
contact feedback (full, normal, binary) outperform
the none framework by 6.3%, 6.6% and 3.7%,
respectively. The improvements, however, are
small and suggest that an affordable binary contact
sensor suite, or even no contact sensing at all, may
be suitable if a small decrease in performance is
tolerable. This result supports our hypothesis that
RL grasping algorithms are deployable to hands
with reduced contact sensor resolution at little
performance decrease when incorporating rich
tactile feedback at train time.
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