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Abstract—Disentanglement is often considered as one of the
most challenging tasks in modern machine learning. In this
project, we propose the G2G architecture, which aims to solve
the disentanglement task by cross-training: in a disassembly
stage, the content and class information of two original images
is separated. Subsequently, two images are generated by mixing
the previously isolated information. This mixing process is then
repeated in a reassembly stage. Ideally, the overall process should
yield reconstructions that are similar to the original images. We
compare three independent approaches to implement the G2G
architecture. A naive approach with symmetric encoders and
a simple decoder lacked generative power. A second approach
which is based on the FUNIT architecture with a CycleGAN
discriminator failed to produce disentangled images. In a third
approach, we used pre-trained FUNIT networks and demon-
strated that the G2G concept produces sensible outputs in a
forward pass. However, resuming training to produce higher
quality images proved to be challenging.

Code is available at https://github.com/axkoenig/ml4cg (for the
first two approaches) and https://github.com/nichtwegzudenken/
ml4cg (for the third approach)

.
Keywords: Machine Learning, Computer Graphics, Disen-

tanglement, Generative Adversarial Networks

I. INTRODUCTION

Disentanglement with deep neural networks remains one of
the main research challenges of modern machine learning. A
disentangled representation separates an original representa-
tion into disjoint parts and allows for the independent control
of one or more of these separated features. Disentanglement
plays a large role at the intersection of machine learning
and computer graphics as it is often beneficial to separate
images into meaningful and independent features for further
processing. For example, an image of a car may be separated
into different feature representations such as ”color”, ”type”,
”pose”, ”rest”.

A branch of deep learning where the separation of infor-
mation is especially beneficial is that of generative adversarial
networks (GANs). These networks were originally proposed
by Goodfellow et al. [4]. The main idea behind GANs relies
on adversarial training of a generator and discriminator: The
discriminator aims at distinguishing whether an image is fake
or real while the generator tries to maximize the probability of
the discriminator classifying the fake image as real and thereby
creates more realistic outputs. It was shown that GANs can
use disentangled representations to recreate new images. By
altering one or more of the disentangled representations this
will directly relate to the generated image (e.g. by manipulat-

ing the ”pose” feature from the car example, the car can be
visualized in different poses).

Disentanglement systems in combination with generative
networks can be used for image editing and generating ar-
tificial datasets. For example, this can be beneficial in the
medical domain where only a limited amount of X-ray images
of a tumor in a specific location exist. A disentanglement
approach could be trained to separate the ”location” attribute
and a generative adversarial network could sample within this
attribute and recombine it with the ”rest” attribute of the
original image to create a new image. Thus, an existing dataset
could be enhanced which may improve consequent algorithms.

II. RELATED WORK

Disentangling features without any supervision remains an
ongoing research challenge. Furthermore, fully supervised
disentanglement is often a cumbersome task due to the lack
of labeled data. For example for the task of transferring the
gender of a facial image, there is rarely an image of the same
person in another gender. This also applies to image-to-image
translation as seen in CycleGAN [15]. Consequently, most
state-of-the-art approaches incorporate supervision but as little
as possible. Many related works include class-supervision,
which means that only the class labels for each image in the
training set are given. The majority of related projects try to
disentangle in a two-fold fashion by disentangling one class
feature (e.g. the identity of a person) from the content features
which often represent the rest of the photo, such as pose, facial
expression, lighting, and the background [14] [10] [13]. From
an architectural standpoint, most of the existing approaches
leverage adversarial training.

For example, Liu et al.’s FUNIT (Few-Shot Unsupervised
Image-to-Image Translation) maps ”images in a given class
to an analogous image in a different class” [10]. They use
a discriminator which discriminates between original input
images and synthetically generated images. This should en-
courage the generator to enhance image quality and realism.
They use a subset of the ImageNet ILSVRC2012 training set
by only extracting faces of different animals and use one or
more class images for translating into an analogous image
of an unseen target class, hence the name Few Shot Image
to Image Translation. The approach has one class and one
content encoder which produce latent class and content codes
of the respective images. The class code is then fed into
the generator through AdaIN layers, which were originally
proposed by Huang and Belongie [6]. The content code is
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directly fed into the generator and the combination of both
codes gives the translated image. This works well with images
of good quality and facial poses which are not too complex,
however, with facial close-ups, the approach still struggles to
generate realistic outputs.

Lample et al. use adversarial training a little bit differently:
They also use an encoder-decoder architecture but let the
discriminator act on the latent space rather than directly on the
images. Their goal is to produce an attribute-invariant latent
representation, which should encode the ”rest” of an image,
such as background, lighting, and pose to be able to feed the
generator a new and altered attribute to generate an image
using the altered attribute. To do this their discriminator tries
to ”guess” the attribute which is encoded inside the latent code
of an image. As their goal is to obtain an attribute-invariant
latent representation, the discriminator should prohibit the
generator from encoding any attributes. The latent code thus
only contains the ”rest of the image”. This should prohibit
the decoder from reconstructing the image using the original
attribute y, resulting in the same original image, but use an
altered attribute y′ to create a new image [9]. Their approach
also allows for altering the intensity of the attribute because the
attribute values for the altered attributes are continuous. This
also gives the project the name fader networks as the faders
on a mixing console can also be used to adjust the intensity
of channels.

Another approach using adversarial training is the one by
Mokady et al. which translates attributes in a weakly super-
vised manner. Their approach makes it possible to seamlessly
transfer content that exists in sample b of the domain B onto
a sample a of another domain A, e.g. a pair of glasses or
a mustache is transferred from one face to another. They
do this by generating a mask that outlines the shape of the
attribute, e.g. the glasses or the mustache. Their architecture
incorporates two encoders – one for the separate attribute
(glasses, moustache) and one for the common ones, i.e. the
rest of the image. The common encoder aims at capturing
the common (and domain invariant) information between the
domains A and B, while the separate encoder encodes only
the separate attribute. A discriminator tries to distinguish
between the common code of domain A and B, while the
common encoder tries to produce latent codes which are
indistinguishable for the discriminator. Ideally, the common
code is the same for both domains such that the separate
attribute is not encoded. Their results show very realistic
translations and even allow for altering the separate attribute
such as changing the style of the glasses.

Very promising results for disentanglement in human faces
come from Nitzan et al. which successfully manage to dis-
entangle the identity of a person from the rest of the image
features. They obtain high visual quality by harnessing the pre-
trained unconditional image generation network StyleGAN by
Karras et al. [8]. Nitzan et al. have minimal supervision and
decouple the process of disentanglement and synthesis. They
tackle the disentanglement in their project and outsource the
process of synthesis to the pre-trained StyleGAN. First, they

map the images into a latent space Z using two encoders Eid

and Eattr – the former encodes the identity f and the latter
the rest f ′. Using a network M , they map this code into the
latent space W of the pre-trained generator G and thereby
leverage the state of the art power of StyleGAN. They map
into Z first and not directly into W because the Z-space is more
disentangled. As the mapping from Z into W is not trivial,
they introduce a discriminator DW which tries to distinguish
the real encodings from StyleGAN’s W -space and their own
network M ’s mappings. Using this method they are even able
to alter the hair belonging to the identity of the person, which
other approaches were not capable of.

One of the few projects which does not use adversarial
training is LORD by Gabbay and Hoshen. LORD stands
for Latent Optimization for Representation Disentanglement
and presents a universal formulation for class and content
disentanglement. They train in a class-supervised setting and
propose two main contributions for disentanglement. They
perform Shared Latent Optimization: The class representations
are modeled as embeddings which should ideally be identical
for images of the same class. This should prevent content
information from being encoded inside the class representa-
tion. Furthermore, they use Asymmetric Noise Regularization
by which they ”want to make sure that no class information
leaks into the content representation” [3]. They regularize the
content code to enforce the minimality of information.

III. DATASETS

A. Naive Approach and CycleFUNIT Approach

The disentanglement of human faces remains an ongoing
challenge. This is partly due to the fact that we humans are
very sensitive to even the slightest irregularities in faces, which
makes it hard to generate realistic-looking images of faces.
Therefore, we want to address this challenge and work on the
CelebA dataset [11] in our first and second approach (i.e. the
naive and the CycleFUNIT approach).

B. FUNIT2FUNIT Approach

For our third approach – which we call FUNIT2FUNIT –
we extended the FUNIT model by embedding it into our own
architecture. For this purpose, we use the pre-trained network
provided by Liu et al. [10], which was trained on animal faces.
Hence, we use the animal face dataset which was also used
by Liu et al. and is a subset of the ImageNet ILSVRC2012
training set [2].

IV. METHODS

The idea of this research project is the so-called G2G
architecture. In this architecture there are two generative
stages: In the first stage, two attributes of each input image
are isolated and then recombined into a new image with
mixed attributes. By repeating this mixing process in the
second stage, both output images should ideally be a perfect
reconstruction of the original input images (see figure 1). The
research question is whether this architecture can evoke and
facilitate disentanglement.



Fig. 1. Scheme of the two-staged G2G architecture

Let x1 and x2 denote the blue and red input images seen
in figure 1. In this project we try to disentangle one separate
attribute – the class feature – from the rest of the image –
the content feature. The class information corresponds to the
identity of a person in the CelebA dataset. Encoder EA should
encode the rest of the image, such as pose, facial expression,
background, lighting, etc. while encoder EB encodes the class.
Ideally, no information of the class code B1 should leak into
code A1 and vice versa. The generator G should learn to stitch
the two codes together and generates a new and mixed image
which should have the identity B2 and the rest information of
A1 (compare figure 1). The mixed images x̂A1,B2 and x̂A2,B1

which we obtain from this first stage are then fed into the same
encoders again: The class and rest latent codes are extracted
and new images are generated from it, which should result in
perfect reconstructions x̂1 and x̂2.

In the following, we present three independent approaches
by which we implement the G2G architecture. The research
question at hand is whether disentanglement can be enhanced
with the G2G architecture while keeping supervision as min-
imal as possible. We start off with a naive approach, with
a straight-forward architecture for the generator and both
encoders. Further, we implement a second approach in which
the encoder and decoder parts are taken from the FUNIT
project of Liu et al. and the discriminator was taken from Zhu
et al.’s CycleGAN [15]. In a third approach, we assemble a
pre-trained FUNIT model in the G2G architecture and resume
training to check if the G2G architecture can outperform the
vanilla FUNIT approach.

A. Naive Approach

For the naive approach, we constructed two symmetric
encoders EA and EB which are inspired by Mokady et al.
[13]. The generator was taken from Gabbay and Hoshen [3].
One of the latent codes is fed into the generator directly,
while the other is fed in via AdaIN layers. For supervision
we introduce the reconstruction loss in equation 1 and two
cycle consistency losses, one for each code (see equations
3 and 2). The reconstruction loss is motivated by the fact
that the original images should be as similar as possible
to the reconstructed images. The cycle consistency losses
should guide the network to produce the same low-dimensional
embeddings in the disassembly stage as in the reassembly
stage (e.g. the feature code A1 should be the same from
original image x1 as from the mixed image x̂A1,B2

). The
overall loss function for the generative network is stated in
equation 4.

Lr =

n∑
i=1

‖x̂i − xi‖ (1)

Lcyc,EA
=

n−1∑
i=1

∥∥EA(xi)− EA(x̂Ai,Bi+1
)
∥∥2 +∥∥EA(xi+1)− EA(x̂Ai+1,Bi)
∥∥2 (2)

Lcyc,EB
=

n−1∑
i=1

∥∥EB(xi)− EB(x̂Ai+1,Bi)
∥∥2 +∥∥EB(xi+1)− EB(x̂A1,Bi+1
)
∥∥2 (3)

Lall = Lr + γ ·
(
Lcyc,EA

+ Lcyc,EB

)
(4)



B. CycleFUNIT

The second approach, which we refer to as CycleFUNIT,
is a combination of the encoders and decoders of Liu et al.’s
FUNIT [10] and the CycleGAN objective by Zhu et al. [15].
The FUNIT content encoder should encode the global style
of the image such as pose, background, and facial expression,
while the FUNIT class encoder should encode the person’s
identity. The FUNIT decoder replaces our generator G.

Since we had problems with image quality in the naive ap-
proach, we conducted a simple sanity check before proceeding
with architectural considerations. To validate that the FUNIT
architecture is capable of generating high-quality images, we
fed the network depicted in figure 2 with two identical images
and guide it to reconstruct the input image. As a reconstruction
loss we used the VGG perceptual loss of a VGG16 [7] (see
equation 5). Our experiments were successful: the FUNIT
architecture gave us a perfect reconstruction with high image
quality.

Fig. 2. Architecture of the FUNIT network by Liu et al. [10]

LV GG =

n∑
i=1

∥∥EV GG

(
x̂i
)
− EV GG

(
xi
)∥∥2 (5)

After achieving high visual quality in the sanity check,
we integrate the FUNIT architecture into the G2G structure
we presented above. We add the cycle consistency losses
in equations 2 and 3 which we also used in the naive
approach. Further, we add the ”long” VGG reconstruction loss
in equation 5. Note that ”long” always refers to ”from original
to reconstructed image” while a loss loss ”from original to a
mixed image” would be referred to as ”short”.

To enhance the image quality of the mixed images we
add the discriminator from CycleGAN which introduces a
third type of loss. The discriminator takes the original images
and the mixed images and tries to distinguish between real
(original) and fake (mixed) ones while the generator tries to
fool the discriminator by producing more realistic outputs. Let
Sg be the set of generated (mixed) images and So the set of
original images. Then the generator tries to generate images
that are classified as 1, i.e. real (see equation 6). On the other
hand, the discriminator tries to differentiate between real and
fake images (compare equation 7). The overall loss of stage
two therefore contains the reconstruction and cycle consistency
losses 5, 2 and 3 and the losses 6 and 7 for the generator and
discriminator.

LG =
1

|Sm|
∑

x∈Sm

l
(
D(x), 1

)
(6)

LD =
1

|Sm|
∑

x∈Sm

l
(
D(x), 0

)
+

1

|So|
∑
x∈So

l
(
D(x), 1

)
(7)

To encourage disentanglement we also add a pre-trained
identity encoder. We leverage a pre-trained face detector as
an identity encoder by removing its last prediction layer. The
network is a ResNet-50 [5] and it was pre-trained on the
VGGFace2 dataset [1]. If two images show a person with the
same identity, then this face detection network should give
a similar latent identity code for both images. We conduct
two separate experiments with the identity encoder. Firstly, we
obtain the identity code of the mixed images and minimize the
L1 distance between the original and its corresponding mixed
image (see equation 8). In this way, we want to provide the
network with a further incentive to swap the identities of both
persons.

LID =

n−1∑
i=1

∥∥EID

(
xi
)
− EID

(
x̂Ai,Bi+1

)∥∥+∥∥EID

(
xi+1

)
− EID

(
x̂Ai+1,Bi

)∥∥ (8)

Secondly, we conduct a separate experiment where we
replace the encoder EB with the pre-trained identity encoder.
We do not enforce the loss from equation 8 in this case.

C. FUNIT2FUNIT

To assess the effect of the G2G architecture more precisely
we assemble a pre-trained network into the G2G architecture.
For this purpose, we use the pre-trained FUNIT architecture
which was also utilized in the CycleFUNIT approach and
attempt to refine the weights by continuing training. FUNIT
originally is a few-shot approach – i.e. it can take multiple
class images as input. However, in our case, we use it for
one-shot image generation to ensure comparability to the other
approaches. The authors of the FUNIT paper showed that
their network produces sensible results for the one-shot case.
The overall architecture of the FUNIT2FUNIT approach is
depicted in figure 3.

The losses that are used in the original FUNIT approach
are a GAN loss, a reconstruction loss, and a feature match-
ing loss. Similar to our previous strategy a discriminator
is fed both original and the generated images and tries to
distinguish between fake and real images. The generator is
thereby encouraged to produce more realistic and high-quality
images. This FUNIT adversarial loss is left unchanged for the
FUNIT2FUNIT approach (for details see [10]).

The reconstruction loss is a ”short” L1 loss between an
original image that is fed into both FUNIT encoders and the
reconstructed image. The reconstruction loss of the original
FUNIT approach uses only the content image. In this project,
we also use the class image for the short reconstruction loss
to get more data through the network before an update step



Fig. 3. FUNIT2FUNIT: Embedding FUNIT into the G2G architecture (with desired reconstruction images)

occurs. Note that the ”short” reconstruction loss is only applied
in the disassembly stage to avoid training on non-realistic
looking images in the reassembly stage. Furthermore, we add
a ”long” reconstruction loss over the whole G2G architecture.
In figure 3 this equals to minimizing the L1 distance between
x1 and x̂1 and x2 and x̂2. We therefore get the following
overall reconstruction loss with G(a, b) being one FUNIT sub-
network as depicted in figure 2 with the class image a and
content image b.

LR =

n−1∑
i=1

λshort ‖xi −G(xi, xi)‖+

λlong ‖xi −G(mi,mi+1)‖
(9)

The feature matching loss uses the discriminator which is
used for the GAN loss at the same time. Here, the discrimina-
tor extracts the features of an original class image and the
mixed image of the same class. The L1 distance between
these feature codes is minimized. To illustrate this with an
example, imagine inputting the meerkat x1 and the dog x2
seen in figure 3. Then the images of the meerkat and the
ones of the translated meerkat m1 in the pose of the dog
are fed into the discriminator and the distance between the
feature codes is minimized to enforce a high-level similarity
of both images. Again, we extend the feature matching loss
for the G2G architecture. We use the vanilla FUNIT feature
matching loss for the disassembly stage and reassembly stage.
In the reassembly stage, we measure the distance between the
features of e.g. the dog m2 in figure 3 and the ones of the

reconstructed dog x̂2. Lastly, the features between the original
and the fully reconstructed images can also be matched, which
gives the total feature matching loss in equation 10.

LFM =

n−1∑
i=1

λD ‖Df (xi)−Df (mi)‖+

λR ‖Df (mi)−Df (x̂i)‖+
λL ‖Df (xi)−Df (x̂i)‖

(10)

Similarly, we modified the loss for the discriminator. FUNIT
implements a loss for real and fake samples. In the FUNIT
approach only the class image and its respective mixed image
are fed through the discriminator as real and fake samples.
In the FUNIT2FUNIT approach we feed both images x1 and
x2 as original samples and both mixed images m1 and m2

as fake samples. Also the real gradient penalty regularization
R proposed by Mescheder et al. is adjusted to consider both
images x1 and x2 [12]. The loss for the discriminator with
the adversarial loss weight λdis = 1.0 and the regularization
weight λreg = 10.0 is stated in equation 11.

LDis =

n−1∑
i=1

λdis ‖D(xi, 1) +D(mi, 0)‖+ λregR (11)

Equation 12 shows the overall loss.

Lall = min
D

max
G

LGAN (D,G)+

LR(G) + λFLFM (G)
(12)



V. EXPERIMENTAL RESULTS

A. Naive Approach

The plot layout which we use throughout all three ap-
proaches can be seen in figure 4. Unfortunately, the results of
the naive approach did not yield satisfactory image quality (see
figure 5. However, it is observable that the facial expressions
of the depicted persons were altered. In the right image triplet
in figure 5 (red bounding box) one can observe that the
facial expression of the one person was transferred onto the
other person, respectively. Unfortunately, these results did not
prove to be robust for images of other persons. Due to the
unsatisfactory image quality, we consider a new approach.

Fig. 4. Plot Layout of original (first row), mixed (second row) and recon-
structed images (third row)

Fig. 5. Results of naive approach (Epochs: 20, Batch Size: 32, γ = 0.4)

B. CycleFUNIT

The experimental results of the CycleFUNIT approach
are subdivided into the two major experiments. In the first
experiment, we use the FUNIT architecture assembled into
the G2G structure with the CycleGAN objective. The loss

is a combination of the ”long” reconstruction loss, the cycle
consistency losses, and the GAN loss. The results in figure 6
show that the network simply copies the image through and
this approach fails to achieve disentanglement.

Fig. 6. Results of CycleFUNIT approach (Epoch: 124, Batch Size: 4)

In a second stage, we added the pre-trained identity encoder.
First, we used it to encode the identity of the mixed images.
This strongly disturbed the training of our generative model
and resulted in mode collapse. We thought that the problem
that causes this is that we add the identity loss in equation
8 from the very beginning when the generated images are
still random pixels. We tried to linearly increase the weight
of the identity loss. This was not successful and we obtained
the same results as in figure 6. When we replaced encoder
EB with the identity encoder we faced issues with adversarial
samples. The cycle consistency loss Lcyc,EB

– which is the
new identity loss – rapidly reduced to near-zero (within the
first 50 iterations), but the results still stayed the same as
in figure 6. This suggests that the loss over the pre-trained
identity encoder is ”tricked” by adversarial samples – some
image features that lead to a rapid decrease of the identity
cycle consistency loss. Reducing the weight of the identity
loss (making it less of an objective to minimize right from
the start) was not successful. Furthermore, we also reduced
the size of the content code to increase the importance of the
identity code by introducing more downsampling steps in the
FUNIT content encoder. However, this did also not yield better
results.

C. FUNIT2FUNIT

For all experiments, we resumed training from the pre-
trained network by Liu et al. which is trained until the
149th epoch. First, we perform our cross-forward feed which
wires the encoders to the decoders according to figure 3. A
simple forward pass gives the results seen in figure 7. These
results feature very good image quality and achieve good
disentanglement of class and content information. It should be
noted that the reconstructions are slightly different compared



to the original images. We aim to improve these results by
resuming training from this point onward.

Fig. 7. A simple forward pass through the pre-trained FUNIT2FUNIT model

To the vanilla FUNIT losses we iteratively added the modi-
fications, we described in section IV-C, starting with the long
L1 reconstruction loss. The results we obtained by adding the
long reconstruction loss with λL = 0.1 can be seen in figure
8. The batch size of all FUNIT2FUNIT experiments is 4.

Fig. 8. Results after adding a long reconstruction loss with λL = 0.1

In the second iteration, the feature matching loss is extended
by the long-range loss and the reassembly stage loss. λD
is set to 1.0 in the original FUNIT approach and we leave
this value unchanged. λR is set to 0.1 to prevent the losses
from rapidly jumping to a high level. This gave the qualitative
results depicted in figure 9.

Unfortunately, instead of improving disentanglement qual-
ity, the images degrade in quality after a few iterations. A
reason for this may be that the optimization objective is
too complex and the additional losses we introduced (long

Fig. 9. Results after 10 iterations using all losses in equation 12

reconstruction loss, long feature matching loss, and reassembly
stage feature matching loss) skew the original results. This has
to be further scrutinized.

VI. DISCUSSION AND OUTLOOK

The research question in the focus of this project is eval-
uating the impact of the proposed G2G architecture on the
disentanglement of image features. To reach the disentangle-
ment of the class and content information we first set up the
network from scratch in a naive approach. Due to lacking
photo-realism and image quality we then leveraged the FUNIT
architecture by Liu et al. in our second approach. This resulted
in better image quality but no disentanglement. However,
this approach seems worth investigating more deeply: the
problem of adversarial samples needs to be addressed further
from an architectural standpoint. We believe that the content
information is too dominant, hence the class information is
ignored. In future work, it should be investigated how we can
guide the network to put more emphasis on the identity code.
The size of the latent FUNIT content code should be reduced
such that the network must also use the identity information
to satisfy the losses. Simply including more downsampling
layers in the content encoder is not sufficient as it dramatically
increases network size. Bigger kernel sizes and higher strides
may be useful for reducing the size of the latent code quickly.

The third approach solely focuses on answering the research
question at hand – to find out whether the G2G architecture
helps disentanglement or not. We believe that extending the
experiments for the third approach can give more answers
on whether this is the case, even though our first attempts at
resuming training of the pre-trained networks were difficult.
An important contribution of our work is that we proved that
a forward pass through the FUNIT2FUNIT architecture pro-
duces sensible results. However, when resuming training the
FUNIT2FUNIT approach seems to have difficulties satisfying
the newly introduced losses with the pre-trained networks.
An ablation study could be performed with the new losses



to see which losses lead to the rapid degradation in image
quality. Namely, these are the long reconstruction loss, the long
feature matching loss, and the feature matching loss between
the mixed and the fully reconstructed images.

Another, approach which is not directly linked to answering
the research question but is a promising approach to achieve
disentangled features is erasing identity-sensitive information
of the content images. More specifically, facial features such
as eyes, nose, and mouth could be erased which would force
the content encoder to encode common information such as
pose, background, and lighting. The other encoder would be
fed with an unmodified image, of which the identity-sensitive
information is then encoded.

VII. CONCLUSION

In this project, we described three independent attempts
at disentangling class and content information with the G2G
architecture. We compare these different approaches with each
other and conclude that the FUNIT architecture is more pow-
erful than the LORD generator in generating highly realistic
images. However, we also found that disentangling image
features with the G2G architecture is a challenging task in
the first two approaches.

By performing a forward pass through the pre-trained
FUNIT2FUNIT network we demonstrated that the principle
behind G2G works: we can mix content and class information
and successfully reconstruct an image that looks similar to the
original. However, we also found that resuming training for the
FUNIT2FUNIT approach is challenging. We proposed several
ideas for future work, which may help other researchers in
achieving disentanglement from the considerations which we
presented in this project.
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