G2G — Current Progress Disentanglement by Cross Training

Alexander Koenig, Li Nguyen, Ron Mokady, Prof Daniel Cohen-Or

All Images: Disentangling in Latent Space by Harnessing a Pretrained Generator, 2020, Yotam Nitzan et al.

Adding Encoders

- Let **Encoder** E_A encode **rest**, e.g. pose, facial expression, background, lighting, ...
- Let **Encoder** E_R encode a specific feature: **identity** •
- The encoded features A and B should be disentangled
- •

Generator G can focus on learning to stitch the encoded features together to a new picture

* Disentangling in Latent Space by Harnessing a Pretrained Generator, 2020, Yotam Nitzan et al.

June

Integrate FUNIT into G2G

Using FUNIT Encoders and Decoder

FUNIT Content Encoder Global Style of Image

FUNIT Class Encoder Identity of Image

Perceptual Loss

Overall Loss

$$L_{gen} = \alpha \cdot L_{vgg} \cdot$$

= VGG Perceptual Loss

= Cycle Consistency Losses

with $\alpha = 1.0$

Plot Layout

Original

Mixed

Reconstructed

Goal *

* Disentangling in Latent Space by Harnessing a Pretrained Generator, 2020, Yotam Nitzan et al.

Results

Original

Mixed

Reconstructed

Epochs: 9, Batch Size: 16, $\gamma = 1.3$

Integrate FUNIT into G2G

Overall Losses

Generator

 $L_{gen} = \alpha \cdot L_{vgg} + \gamma \cdot L_{cvc} + \frac{\lambda_g \cdot L_{adv}}{\lambda_g \cdot L_{adv}}$

= VGG Perceptual Loss = Cycle Consistency Losses

Discriminator

with $\alpha = 1.0$

= Generator GAN Loss

 $L_{dis} = \zeta \cdot \left(\frac{L_{real} + L_{fake}}{\gamma}\right) \quad \text{with } \zeta = 0.2$ 2

Results

Original

Mixed

Reconstructed

Epoch: 124, Batch Size: 4, $\gamma = 10.0$, $\lambda_g = 1.0$

Identity Loss

- Use pretrained **Face Detector** as an identity encoder
- Minimise distance between produced representation

Overall Losses

Generator

= VGG Perceptual Loss = Cycle Consistency Losses

Discriminator

 $L_{dis} = \zeta \cdot (-$

$L_{gen} = \alpha \cdot L_{vgg} + \gamma \cdot L_{cyc} + \frac{\lambda_g \cdot L_{gen}}{\delta \cdot L_{gen}} + \delta \cdot L_{id}$

= Generator GAN Loss = Identity Loss

$$\frac{L_{real} + L_{fake}}{2}$$

with $\zeta = 0.2$

Results

Original

Mixed

Reconstructed

Epochs: 0-8, Batch Size: 8, $\lambda_g = 1.0$, $\gamma = 10.0$, $\delta = 1.0$

Next Steps

- Increase weight of L_{ID} successively
- Quantify usefulness of G2G reassembly stage
- Idea: Erase facial landmarks (identity specific information) of image which represents rest

* Disentangling in Latent Space by Harnessing a Pretrained Generator, 2020, Yotam Nitzan et al.

Any Questions?