
Referent
Technische Universität München
Fakultät für Muster
Lehrstuhl für Muster
Ort, Datum (Schreibweise: 00. Januar 2015)

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Robotics, Cognition, Intelligence

Tactile Grasp Refinement using Deep
Reinforcement Learning and Analytic Grasp

Stability Metrics

Alexander Koenig

Referent
Technische Universität München
Fakultät für Muster
Lehrstuhl für Muster
Ort, Datum (Schreibweise: 00. Januar 2015)

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Robotics, Cognition, Intelligence

Tactile Grasp Refinement using Deep
Reinforcement Learning and Analytic Grasp

Stability Metrics

Taktile Griffverfeinerung mit Deep
Reinforcement Learning und analytischen

Griffstabilitätsmetriken

Author: Alexander Koenig
Supervisor: PD Dr. Tobias Lasser
Advisor: Prof. Dr. Björn Menze
Submission Date: 15.10.2021

I confirm that this master’s thesis is my own work and I have documented all sources and material
used.

Munich, 15.10.2021 Alexander Koenig

Acknowledgments

Firstly, I would like to thank Robert Howe, Professor of Engineering, for hosting my research stay in
the Harvard Biorobotics Lab. I specifically want to thank him for my fellowship at the Harvard John
A. Paulson School of Engineering and Applied Sciences (SEAS). Furthermore, I would like to thank
Zixi Liu, a Ph.D. student in the lab, for always supporting me when there were any urgent questions
regarding the project or life in Boston. I am also grateful that Lucas Janson, Assistant Professor of
Statistics, joined the collaboration and provided valuable insights regarding the machine learning
aspects of the project. I enjoyed working closely with all of you, and thank you for the freedom you
gave me to steer the project in the directions that interested me the most while also providing me
with strong guidance along the way. I especially appreciated the quick feedback iterations during
the final stages of the submission of our paper [38].

I would also like to thank the administrative staff at Harvard for working hard to get me a visa
and a National Interest Exception which allowed me to move to the United States even in the face
of the travel ban caused by the ongoing COVID-19 pandemic. I am incredibly grateful that I could
conduct my research on-site in Boston from January through July 2021. My time in the US has
broadened my horizon, furthered my knowledge of research life at top academic institutions, and
allowed me to meet other like-minded robotics researchers through informal chats in the lab. In
this regard, I would like to thank the other Ph.D. students of the Biorobotics lab Buse Aktas and
Sebastian Roubert Martinez, for welcoming me to the group with open arms and for organizing
memorable lab activities such as kayaking on the Charles River.

Furthermore, I would like to thank Professor Dr. Björn Menze and PD Dr. Tobias Lasser for
agreeing to supervise this project at my home university, the Technical University of Munich. I
appreciate that you supported my plans to conduct research for my master thesis abroad and that
the organizational concerns were so unbureaucratic. My gratitude also goes towards my parents
and family, who supported me tirelessly throughout my studies. Finally, I would like to mention
two fellow robotics students from Munich. I am grateful to Julia Pfeiffer, who stroke the match and
inspired me to apply for master theses in the US. Federico Gabriel Wyrwal supported me regarding
questions on reinforcement learning and provided me with valuable insights from his extensive
experience with this technique.

Lastly, I would like to thank the German Academic Exchange Service (DAAD) for supporting my
research stay with a full scholarship through the IFI (German: Internationale Forschungsaufenthalte
für Informatikerinnen und Informatiker) program. Furthermore, I am grateful for the PROMOS
scholarship which the Technical University of Munich granted me. My research was also partly
funded by the United States National Science Foundation (NSF) under Grant No. IIS-1924984, for
which I am very thankful. My scholarships (IFI, PROMOS, and NSF) did not overlap.

iii

Abstract

Robotic grasping systems that rely on open-loop controllers often fail when a grasp is subject to
unforeseen calibration errors. Controllers should compensate for these errors by continuously
integrating sensory feedback and locally refining the grasp to obtain a more stable grip. While it
is difficult to refine grasps through vision alone due to occlusion, there is excellent potential for
closing the feedback loop in robotic grasping with tactile sensing.

Reinforcement Learning (RL) is becoming an increasingly popular technique for robotic grasping,
and reward functions are at the core of every RL algorithm. Rewards of most state-of-the-art
grasping algorithms are complex and hand-crafted functions that do not rely on well-justified
physical models from grasp analysis. In our first contribution, we demonstrate the potential of
using analytic grasp stability metrics as rewards for RL-based tactile grasp refinement controllers.
Our algorithms receive only tactile and joint position data from a three-fingered hand and refine the
grasp with iterative updates to the robot’s wrist pose and finger positions. In large-scale simulated
experiments, we find that the best performing reward functions combine metrics concerning finger
placement with measures based on current contact forces. This reward framework achieves
average success rates of 95.4% for cuboids, 93.1% for cylinders, and 62.3% for spheres across
wrist position errors between 0 and 7 cm and rotational errors between 0 and 14 deg. We
outperform a binary reward baseline which related works often employ by 42.9%.

In a second contribution, we study the relation between tactile sensing resolution and grasp
refinement success. We find that algorithms trained with accurate tactile feedback on contact
positions, normals, and forces perform up to 6.6% better than a baseline which only processes
proprioceptive information about joint positions. However, even these algorithms, which assume
no tactile feedback in their input, reach adequate success rates of 90.7% for cuboids and 87.6% for
cylinders across significant calibration errors of up to 7 cm and 14 deg when trained with expressive
contact-based reward functions. This result is valuable for robotic hand design since accurate
tactile sensors are expensive and delicate hardware items. We make the source code used in this
thesis1 publicly available2 and provide supplementary video material3.

1Partial results of the presented work were submitted to a robotics conference as a publication [38]. Any references to
the paper are clearly indicated.

2https://github.com/axkoenig/grasp_refinement
3https://www.youtube.com/watch?v=9Bg8ZEAEOGI

v

https://github.com/axkoenig/grasp_refinement
https://www.youtube.com/watch?v=9Bg8ZEAEOGI

Nomenclature

(ξ, η, ζ) Rotation in Euclidean space

(x, y, z) Position in Euclidean space

α Temperature parameter in the soft actor-critic (SAC) framework

f̄i,cur ∈ R3 Tangential force magin of fi,cur to the friction cone

f̄i,task ∈ R3 Tangential force magin of fi,task to the friction cone

τ ∈ R3 Torque vector

τi = ri × fi ∈ R3 Torque resulting from fi

τi,j ∈ R3 The torque resulting from friction cone edge fi,j

f ∈ R3 Force vector

fg ∈ R3 Object weight

fi ∈ R3 Contact force at contact i

fi,add ∈ R3 Expected additional contact force at contact i to compensate a task wrench wt

fi,cur ∈ R3 Current contact force at contact i

fi,j ∈ R3 The j-th friction cone edge at contact i

fi,n ∈ R3 Normal component of contact force fi

fi,task ∈ R3 Expected total contact force at contact i to compensate a task wrench wt

fi,t ∈ R3 Tangential component of contact force fi

ni ∈ R3 Contact normal at pi

pc ∈ R3 Object center of mass

pi ∈ R3 Contact point on object

ri ∈ R3 Vector pointing from pc to pi

w = (f τ)T ∈ R6 Wrench vector

vii

viii Nomenclature

wt ∈ D Anticipated task wrench

δcur Grasp quality based on current contact forces

δtask Expected grasp quality during task execution

ετ Largest-minimum resisted torque

εf Largest-minimum resisted force

εw Largest-minimum resisted wrench

γ ∈ [0, 1] Discount factor in a Markov Decision Process (MDP)

F ∈ R3×nc Matrix containing nc contact forces fi of a grasp

G ∈ R6×nc·nλi Grasp matrix where nλi depends on the choice of the contact model

N ∈ R3×nc Matrix containing nc contact normals ni of a grasp

A Set of all actions at ∈ A in an MDP

H (·) Shannon entropy of a random variable

S Set of all states st ∈ S in an MDP

W Convex set of wrenches a grasp can apply to an object (i.e., the Grasp Wrench Space
(GWS))

Wτ Convex set of torques a grasp can apply to an object

Wf Convex set of forces a grasp can apply to an object

µ Coefficient of friction

π∗ Optimal policy

at Action at step t in an MDP. If action is a vector we write at.

D = {w1,w2, . . . ,wq} Task definition including q wrenches that the grasp must resist

Gt Return from step t onwards in an MDP

m Number of edges spanning the approximated friction cone

nc Number of contacts of a grasp

Q (st,at) Soft action-value function in the SAC framework

q∗(s, a) Optimal action-value function

qπ(s, a) Action-value function of a policy

Nomenclature ix

r(st) Reward function

rt Reward at step t in an MDP

st State at step t in an MDP. If state is a vector we write st.

t ∈ N0 Time step in an MDP

T Final time step t in an MDP

V (st) Soft state-value function in the SAC framework

v∗(s) Optimal state-value function

vπ(s) State-value function of a policy

A
BT ∈ R4×4 Homogeneous transformation matrix from coordinate frame {A} to frame {B}

Acronyms

3D three-dimensional. 24, 35, 39, 53, 63

CPU central processing unit. 61

DART Dynamic Animation and Robotics Toolkit. 20–23, 61

DOF degrees of freedom. 4, 18, 21, 28, 29, 52, 53, 59, 70, 76

GUI Graphical User Interface. xiii, 19, 20

GWS Grasp Wrench Space. viii, 24, 37–39, 41, 44

HF Hard Finger. 46, 47

IMU Inertial Measurement Units. 20

KL Kullback–Leibler. 16, 17

LCP Linear Complementarity Problem. 21, 31, 68

MDP Markov Decision Process. viii, ix, 8, 9, 13

ML Machine Learning. xiii, 6, 7, 18, 27, 28

ODE Open Dynamics Engine. 20–22

PCA Principal Component Analysis. 28

PD proportional–derivative. 23, 51

PPO Proximal Policy Optimization. 14, 30, 34

PwoF Point Contact without Friction. 46

REPS Relative Entropy Policy Search. 28, 34

RL Reinforcement Learning. v, xiv, 4–7, 11, 13–15, 22, 23, 28–30, 33, 35, 48–50, 59, 61, 67, 69,
70, 75, 76

xi

xii Acronyms

ROS Robot Operating System. 20, 23–25

SAC soft actor-critic. vii–ix, xv, 7, 14, 15, 51, 53, 54, 61, 68

SF Soft Finger. 46

SL Supervised Learning. 7, 10, 29, 34

SVM Support Vector Machine. 28

TCP tool center point. 50, 53

TRPO Trust Region Policy Optimization. 14, 30, 34

TWS Task Wrench Space. 44

UL Unsupervised Learning. 7

List of Figures

1.1 A person uses tactile feedback to refine a grasp (adapted from [26]). 1

1.2 A typical industrial grasping setup with coordinate frames. 2

1.3 A keyword search on Google Scholar for "robot grasp reinforcement learning"
indicates that the subject is becoming increasingly popular (results as of October 4,
2021). 4

2.1 Taxonomy of Machine Learning (ML) techniques (adapted from [79]). 7

2.2 Action-perception feedback loop for RL systems (adapted from [90]). 8

2.3 Images of the ReFlex TakkTile robotic hand. 18

2.4 Barometric pressure sensors integrated in the robotic fingers. 19

2.5 Gazebo Graphical User Interface (GUI) with simulated ReFlex TakkTile and a cylinder. 20

2.6 Robotic finger with two revolute joints and contact point p. 22

2.7 System design of ReFlex Simulation Stack. 22

3.1 Control paradigms for closed-loop grasping controllers. 27

3.2 Input data for closed-loop grasping controllers. 28

4.1 Friction cone at contact pi with m = 5 and the contact frame {ni, ti,oi}. The
vectors fi,j span the edges of the approximated friction cone. The force fi with
its normal fi,n and tangential component fi,t lies inside the friction cone (graphic
adapted from [34]). 36

4.2 Planar example of a grasp and stability analysis with εf (image source Koenig et al.
[38]). 39

4.3 Analyzing a grasp and calculating fi,j and τi,j on whichWf andWτ are based. . 40

4.4 Grasp configurations with calculated grasp quality metrics. 41

4.5 Friction cones, current contact forces fi,cur, contact normals ni and tangential force
margins f̄i,cur used to compute δcur. Note that we consider the true friction cone
now, and not the approximated one as in [19] (image source Koenig et al. [38]). . 42

4.6 Friction cones and anticipated task contact forces fi,task used to compute δtask
(image adapted from Koenig et al. [38]). 45

4.7 Information flow in the grasping pipeline. The grey arrows indicate data that only
flows while training the algorithm. Blue arrows indicate information that flows during
training and testing. We also show update frequencies and programming languages
(ReFlex image source [77]). 49

xiii

xiv List of Figures

4.8 Overview of the RL algorithm. In (A), we generate a new object wrist error combi-
nation (O,E). Afterward, we start the (B) grasp refinement episode using different
reward functions (image adapted from Koenig et al. [38]). 50

4.9 Minimum and maximum object sizes. Spheres are placed on a concave mount to
prevent rolling (image source Koenig et al. [38]). 52

4.10 Left: wrist error case A (i.e., the ground-truth grasping pose). Right: wrist error case
H (i.e., maximum wrist error) (image source Koenig et al. [38]). 53

4.11 Train results for reward frameworks defined in Figure 4.8 (includes data from [38]). 55
4.12 Test results for reward frameworks defined in Figure 4.8 (includes data from [38]). 57

5.1 Train results for contact frameworks defined in Table 5.1 (includes data from [38]). 65
5.2 Test results for contact frameworks defined in Table 5.1 (includes data from [38]). 66
5.3 A grasp with two contact points p1 and p2 and friction cones at each contact. The

vector −fg must balance the object’s weight vector fg. This is the configuration in
which the sum of the contact force magnitudes

∑nc
i ‖fi‖ is minimized. 72

List of Tables

3.1 Overview of related works using data-driven approaches and tactile information.
Reality means that experiments were conducted on physical robot hardware, Simu-
lation refers to algorithms trained and tested only in simulation, and Both means
that algorithms were trained in simulation and deployed to real hardware (includes
data from Koenig et al. [38, p. 2]). 34

4.1 Contact models and respective selection matrices (partly adapted from [73]). . . . 46
4.2 Grasp quality metrics and the information required to compute them. 48
4.3 Object properties and sampling ranges. 52
4.4 Wrist error cases (source Koenig et al. [38]). 52
4.5 Hyper-parameters for SAC [23] algorithm. 54
4.6 Results of t-test for reward comparison. The mean of framework x is µx and ‘≈ 0.0’

means value was below machine precision (includes data from [38]). 58

5.1 Inputs for different contact sensing frameworks. 63
5.2 Results of t-test for contact sensing comparison (includes data from [38]). 67

xv

Contents

Acknowledgments iii

Abstract v

Nomenclature vii

Acronyms xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 The Human Perspective . 1
1.2 The Robot Perspective . 2
1.3 Research Questions . 4
1.4 Outline . 6

2 Background 7
2.1 Reinforcement Learning . 7

2.1.1 Taxonomy . 7
2.1.2 The Action-Perception Loop . 7
2.1.3 Markov Decision Processes . 8
2.1.4 Rewards and Returns . 9
2.1.5 Policies and Value Functions . 10
2.1.6 Optimal Policies and Optimal Value Functions 12
2.1.7 Soft Actor-Critics . 14

2.2 Simulating Robotic Grasping . 18
2.2.1 Motivation . 18
2.2.2 Robotic Hand . 18
2.2.3 Simulation Software . 19
2.2.4 The ReFlex Simulation Stack . 22

3 Related Works 27
3.1 Taxonomy . 27
3.2 Data-Driven Tactile Grasp Refinement . 28

xvii

xviii Contents

3.3 Comparison . 31

4 Reward Design and Grasp Refinement 35
4.1 Analytic Grasp Stability Metrics . 35

4.1.1 Largest-Minimum Resisted Wrench . 35
4.1.2 Measuring Resistance to Pure Forces and Torques 38
4.1.3 Force-Agnostic Grasp Stability Metrics . 41
4.1.4 Summary . 48

4.2 Experimental Setup . 48
4.2.1 Algorithm Overview . 48
4.2.2 Training Dataset . 51
4.2.3 Test Dataset . 52
4.2.4 State and Action Space . 52
4.2.5 Hyper-parameters . 53

4.3 Results . 54
4.3.1 Training . 54
4.3.2 Testing . 56

4.4 Discussion . 59

5 Contact Sensing and Grasp Refinement 63
5.1 Experimental Setup . 63
5.2 Results . 64

5.2.1 Training . 64
5.2.2 Testing . 66

5.3 Discussion . 67

6 Conclusion 75
6.1 Summary . 75
6.2 Future Work . 75

Bibliography 77

1 Introduction

This chapter introduces the topic of robotic grasp refinement and highlights why it is a pressing
issue in robotics. Firstly, we approach the subject by exploring the human perspective on grasp
refinement and start with a high-level example to illustrate the topic of this work. Consequently, we
draw parallels between the human and robot perspectives by investigating when and how tactile
grasp refinement is relevant in modern robotic grasping systems. Further, we define concrete
research goals and summarize our contributions. Finally, we outline the structure of this thesis.

1.1 The Human Perspective

Grasping is an innate human capability [84]. The control and sensory processing of our hands
occupy a disproportionally large amount of the brain’s motor and sensory cortex compared to other
body parts [69], which highlights the importance of manipulation and grasping for the survival
of the human species. Grasping and manipulation enable us to eat and drink, use tools, and
understand our surroundings and are therefore crucial for the advancement of humankind.

{C} {B}

{T}

{O}

Figure 1.1: A person uses tactile feedback to refine a grasp (adapted from [26]).

Humans heavily rely on tactile sensing when grasping and manipulating objects [31]. We
define tactile grasp refinement as the process of using sensory information about contact events
to improve the stability of a grasp. Figure 1.1 depicts an ordinary situation [26] in which we
humans performs tactile grasp refinement. We roughly remember the location of an object that
we would like to grasp, but another object (e.g., a shelf mounted high up on the wall) occludes
the object of interest. Hence, we can not use our vision to accurately determine the object’s pose
and, consequently, use our best guess for an initial grasp attempt. Afterward, we process our

1

2 CHAPTER 1. INTRODUCTION

hand’s tactile feedback to intuitively decide which direction to move our palm and fingers to get an
improved grip on the object.

From the example in Figure 1.1, we identified object occlusion as one primary source of error that
humans learned to compensate using tactile feedback. Another common situation where our tactile
sense is vital is grasping in the dark. The sources of errors that need to be compensated by iterative
refinements through robots are often similar. As we try to move robots from well-controlled factory
environments into unstructured and human environments, we must aim to develop similar adaptive
grasping strategies that humans evolved throughout evolution. The dexterity and versatility of the
human hand are by no means matched by modern autonomous robotic grasping and manipulation
systems. Therefore, it is essential to address this fundamental challenge and solve this open
research problem in the quest for truly autonomous robots.

1.2 The Robot Perspective

Let us first discuss the hardware setup of a typical robotic grasping system to define the problem
more accurately and identify potential sources of error in this system. Figure 1.2 shows a grasping
setup that is standard in industrial contexts such as warehouses or factory floors. A typical task
such systems perform is bin-picking: moving an object from one bin into another. There are usually
four components with four respective coordinate frames in such a gripping robot. Firstly, there is
an object of interest with frame {O}. Most grasping systems feature one or more cameras {C} to
track the object in space. Finally, there is a robotic arm with a base frame {B} and a robotic hand
or gripping tool {T} mounted on the wrist of the robotic arm.

{C}
{B}

{T}

{O}

C
OT

T
OT

B
CT

B
TT

{C}
{B}

{T}

{O}

C
OT

T
OT

B
CT

B
TT

Figure 1.2: A typical industrial grasping setup with coordinate frames.

A central question in modern robotics research is how to precisely and robustly control grasping
systems as depicted in Figure 1.2. Traditionally, robotic grasping is separated into a planning

1.2. THE ROBOT PERSPECTIVE 3

and an execution step [56]. In the planning step, computer vision algorithms infer the object’s
geometry and pose C

OT relative to the camera frame {C}. A grasp synthesis algorithm then
determines an appropriate grasping pose T

OT for the tool with respect to the object that satisfies
the constraints at hand (e.g., object geometry, expected grasp stability, reachability, execution
time and singularity avoidance). Equation (1.1) shows how the coordinate transformations from
Figure 1.2 are connected. In equation (1.2), we obtain the desired tool pose in the manipulator’s
coordinate frame B

T T by expressing the grasping pose T
OT in the manipulator’s coordinate frame via

the transforms B
CT and C

OT . In the execution step, an open-loop controller executes the computed
trajectory and thereby moves the robotic hand to the desired pose B

T T which consequently grasps
the object.

B
T T

T
OT = B

CT
C
OT (1.1)

B
T T = B

CT
C
OT (TOT)−1 (1.2)

The aforementioned open-loop controllers solely execute a computed trajectory and do not
process sensory information online to update the grasp. Therefore, such controllers can not react
to calibration errors, which reduces the robustness of open-loop grasping algorithms. Calibration
errors can occur in any of the introduced coordinate transformations, as explained below.

• Perception errors in C
OT : Perception algorithms often struggle to determine the correct object

pose and geometry. Reasons for this may be inaccurate camera calibration, noise induced
by insufficient lighting conditions, an occluded object (like in Figure 1.1), or limitations on the
object pose prediction algorithm.

• Grasp prediction errors in T
OT : The planning algorithm aims to find a suitable tool pose {T}

relative to the object {O} to grasp it. Errors in this transform can arise due to insufficient
object data (e.g., an incomplete geometry model) or poorly performing grasp synthesis
algorithms. Furthermore, open-loop grasping algorithms fail if the object moves while
executing the grasp, e.g., due to unwanted interactions with the environment or the robotic
hand.

• Registration errors in B
CT : The camera coordinate frame {C} and the base frame {B} of

the manipulator must be co-registered through a known and fixed arrangement of reference
points such as visual fiducials in the robot’s base frame {B}. An accurate estimate of this
transform B

CT is required to represent the camera’s measurements in the robot’s frame of
reference. The calibration accuracy depends on various parameters such as the conver-
gence of iterative calibration methods [85], the calibration precision of the intrinsic camera
parameters, or the discrepancy between the physical calibration phantom and its model.

• Execution errors in B
T T : Equation (1.2) shows that BT T is a function of the above transforms

B
CT , COT and T

OT . Hence, any errors in these matrices will multiply and result in an overall
larger misalignment in the desired grasp pose B

T T . Additionally, this desired tool pose B
T T

4 CHAPTER 1. INTRODUCTION

may not always be reached due to inaccuracies caused by mechanical tolerances, which add
up along the kinematic chain. Hence, this problem is especially prominent for manipulators
with many degrees of freedom (DOF) and large links. A proper manipulator calibration
mitigates these errors. However, in practice, robots are not always accurately calibrated, and
their calibration parameters may change over time due to wear.

Some approaches use computer vision to compensate for such errors at execution time. The
work by Morrison et al. [61] is a prime example of vision-assisted closed-loop robotic grasping.
They update the grasp based on depth images from a wrist-mounted camera while executing
a previously synthesized grasp candidate. They report that the depth sensor struggles with
reflective and black objects, worsening the algorithm’s performance. More importantly, the depth
camera reports no results once the object-to-sensor distance falls below a specific limit. Hence,
the algorithm can not further refine the grasp once the fingertips are closer than 7cm to the
object. Other challenges for vision-based closed-loop controllers are occlusion through items in
the camera’s line of sight or self-occlusion (i.e., the side of the object not facing the camera system
is not perceivable).

Since vision-assisted reactive grasp control is prone to the above shortcomings, there is excellent
potential for tactile sensing in closed-loop robotic grasp refinement. Tactile sensors are either
integrated into the robotic hand’s fingers and palm (e.g., [65]) or are retro-fitted to a non-touch-
sensitive hand (e.g., [76]). Unlike vision systems, touch sensors can perceive local contact events
and are therefore not susceptible to occlusion.

1.3 Research Questions

Recent innovations in the field of RL attract considerable interest from the robotics community.
Robotic grasping in particular benefits from the advancements in RL and Figure 1.3 highlights that
the subject is a trending matter.

2000 2005 2010 2015 2020
Year

1000

2000

3000

4000

N
um

be
r o

f P
ap

er
s

Figure 1.3: A keyword search on Google Scholar for "robot grasp reinforcement learning" indicates
that the subject is becoming increasingly popular (results as of October 4, 2021).

1.3. RESEARCH QUESTIONS 5

Several related works [8, 29, 56, 99] use tactile information to train RL algorithms to grasp.
Some of these works make unrealistic assumptions for the algorithm’s input signal. For example,
they assume perfect knowledge about the object pose [56] or object geometry [29]. However, such
data is commonly only available in simulated environments and not in the real world. In the real
world complex and expensive vision systems would be needed to obtain this data at high accuracy.
It should therefore be investigated whether grasp refinement algorithms are trainable solely based
on information that is intrinsically available from a robotic hand, such as joint positions and contact
data.

Besides the algorithm’s input, the reward function is a core component of every RL algorithm [89].
The reward functions of state-of-the-art approaches [8, 29, 56, 99] often consist of hand-crafted
cues for grasp success, such as the number of contacts [29, 56]. While such cues may make
sense at first glance, they have no well-justified relation with grasp stability: a grasp with many
contacts can easily fail if the contact forces are insufficient to perform the desired task. The robotics
community does not yet leverage the rich body of research on grasp analysis and grasp stability
metrics [78] in the context of closed-loop tactile grasping with RL. Hence, in our first research
question RQ 1, we empirically investigate the potential of analytic grasp stability metrics as sound
optimization objectives for RL algorithms while also relaxing the assumptions on the algorithm’s
inputs signals compared to related works.

RQ 1: Which analytic grasp stability metrics are the most expressive reward
functions for RL algorithms that refine grasps on three-fingered robotic hands
receiving only tactile and joint position data as input?

Recent works revealed that contact sensing improves the success rates of RL grasping [56]
and in-hand manipulation algorithms [53, 54]. However, these studies [53, 54] also report that the
contact force resolution is not directly correlated with the algorithm’s performance. Melnik at al. [53,
54] found that RL algorithms trained with accurate normal force data perform approximately equally
well as ones that only receive binary contact signals. This result is counterintuitive since accurate
normal force readings are without a doubt relevant for the execution of the studies tasks in [53, 54]
(e.g., in-hand block or pen rotation). To understand this discrepancy more deeply, we study the
effect of contact sensing resolution in our second contribution and test if we reach similar results
as in [53, 54] in our grasp refinement experiment. There is a second reason to study the effect of
contact sensor resolution on grasp refinement success. Tactile sensors are delicate and expensive
hardware items. Therefore, it is interesting to investigate whether highly accurate contact sensing
is at all required to perform tactile grasp refinement. Hence, our results can be a valuable guide
towards robotic hand design.

RQ 2: What is the relation between contact sensing resolution and tactile grasp
refinement success?

6 CHAPTER 1. INTRODUCTION

1.4 Outline

The remainder of this thesis is structured as follows. In chapter 2 we introduce the core concepts of
deep RL and review the actor-critic algorithm used in this work. Furthermore, we give an overview
of the developed simulation environment through which we generate data to train to RL algorithms.
In chapter 3 we summarize and compare related works that also process tactile data with ML.
Chapter 4 includes an in-depth explanation of the analytic grasp quality metrics used in this work
and discusses the experimental setup as well as the empirical results to answer RQ 1. Chapter
5 analyzes our second research objective RQ 2. Last but not least, the conclusion in chapter 6
summarizes this research effort and provides ideas for future work.

2 Background

This chapter gives a brief introduction to RL. It summarizes the fundamentals of RL and introduces
some vital notation as presented in the works by Sutton and Barto [90] and Russel and Norvig
[79]. We will also discuss the SAC [23] algorithm used in this project. Finally, we introduce the
simulation framework that we specifically designed for the experiments described in later chapters.

2.1 Reinforcement Learning

2.1.1 Taxonomy

Figure 2.1 shows that RL, along with Supervised Learning (SL) and Unsupervised Learning (UL),
is a sub-field of ML.

Machine Learning

Reinforcement
Learning

Unsupervised
Learning

Supervised
Learning

Figure 2.1: Taxonomy of ML techniques (adapted from [79]).

There is a clear distinction between these three fields: SL is the process of using labeled training
samples to infer a function that maps an input to the desired output [79]. A typical SL problem is
classifying if an image shows a car or a truck. UL is the problem of identifying a hidden structure
within a dataset without using explicit labels [79]. An example of UL is distinguishing three types of
tissue in medical images by finding cluster centers in their intensity histogram. RL is the process
of goal-directed learning by interaction with an environment [90]. An example of RL could be the
controller of a robot lawnmower that must avoid running out of battery while mowing as much grass
as possible. While there are apparent differences between these methods, a common goal of all
ML algorithms is to perform well on unseen data.

2.1.2 The Action-Perception Loop

Sutton and Barto [90] define the two fundamental entities in a RL system: the agent and the
environment. The agent is the learning decision-maker that interacts with the environment at
time t through actions at where t ∈ N0 [90]. The environment responds to these actions and
produces the successor state of the system st+1 along with a scalar reward signal rt+1 ∈ R [90].

7

8 CHAPTER 2. BACKGROUND

The agent’s goal is to select actions based on the observation st+1 to maximize the cumulative
reward it receives from the environment [90]. Figure 2.2 visualizes the interaction between the
agent and the environment in the form of an action-perception feedback loop.

In the example of the robot lawnmower, the actions could be the orientation of the mobile robot
and its linear velocity. The state of the environment may be the robot’s position and the height of
the grass in the immediate surrounding. Finally, the reward could be the ratio of area mowed over
battery power used in the last time step.

Agent Environment

Actions: at

Next State:
Reward:

st+1
rt+1

Figure 2.2: Action-perception feedback loop for RL systems (adapted from [90]).

It is worth noting that the agent’s state observation st may not always represent the complete
state of the environment [79]. In the robot lawnmower example, the environment is called partially
observable, since the agent only receives state information about the grass in its immediate vicinity,
while it cannot accurately monitor the state of distant parts of the lawn. On the other hand, an
environment is said to be fully observable if the agent’s state observation contains the complete
state of the environment [79] (such as in a chess game).

Furthermore, it is important to distinguish between continuous and discrete action spaces [90].
Discrete actions are suitable if the task is describable using a finite set of actions (e.g., an agent
that solves a maze can either go straight, left, or right). Continuous actions are prevalent in robotics
tasks, where the agent controls a real-valued robot property (e.g., end-effector position of a robotic
arm). The type of action space is a critical factor in RL algorithm selection.

2.1.3 Markov Decision Processes

The sequential decision making process in RL is modeled as a Markov Decision Process (MDP)
[90]. The MDP formalism reduces any goal-directed learning procedure to a five-tuple (S,A, p, r, γ)

[88], where

• S is the set of all states of the environment (with st ∈ S),

• A(st) is the set of all actions that the agent can take from state st (with at ∈ A(st)),

• p(st+1|st, at) is the transition model which describes the probability of seeing state st+1 after
taking an an action at in state st,

2.1. REINFORCEMENT LEARNING 9

• r(st) (sometimes r(st, at)) is the reward function that assigns each state st (and action at) a
utility rt, and

• γ ∈ [0, 1] is the discount factor that represents the current value of future rewards [90].

MDPs make several assumptions. The state transitions of an MDP satisfy the Markov property
in equation (2.1): the probability of reaching the state st+1 solely depends on the immediately
preceding state st and action at but not on previous states or actions [90]. That is, the state st
must capture all information that is relevant for the agent’s future decisions [90]. Intuitively, a
Markovian transition model assumes that the future solely depends on the present and not on the
past [88]. Another assumption of MDPs is that the state is fully observable, i.e. the agent has
perfect knowledge of the environment’s state [79].

p (st+1 | s0, a0, . . . , st, at) = p (st+1 | st, at) (2.1)

2.1.4 Rewards and Returns

The trajectory (s0, a0, r1, s1, a1, r2, s2, a2, . . . , rT , st) defines the sequence of states, actions and
rewards that an MDP produces, where T is the trajectory’s final time step. RL agents aim to
maximize the return, which is the cumulative reward that the trajectory generates [90].

Sutton and Barto [90] distinguish between two types of returns depending on the nature of the
MDP. In episodic tasks a terminal state st is reached after a finite number of time steps T [90].
In this case, the learning process is separable into multiple independent subsequences, called
episodes [90]. Playing a timed car racing video game is an example of an episodic task. We can
break it down into multiple races, where each new race begins independently of the outcome of
the previous race. The optimization objective for episodic tasks is the finite-horizon undiscounted
return in equation (2.2), which is the sum of all received rewards in the time interval [t+ 1, T] [90].

Gt
.
= rt+1 + rt+2 + · · ·+ rT =

T∑
k=1

rt+k (2.2)

On the other hand, Sutton and Barto [90] call tasks that go on without limit continuing tasks.
For example, a controller for a bipedal walker has no clear terminal state and does not naturally
break down into separate episodes. Since the final time step would be T =∞ for continuing tasks,
the return could be infinite when computed with equation (2.2), but is difficult to compare two
sequences with infinite return [79]. Therefore, Sutton and Barto [90] compute the infinite-horizon
discounted return with a discount factor γ ∈ [0, 1] in equation (2.3).

Gt
.
= rt+1 + γrt+2 + γ2rt+3 + · · · =

∞∑
k=0

γkrt+k+1 (2.3)

The discount factor γ has several advantages. Mathematically, it is convenient because it will
yield finite returns for infinite agent-environment interaction sequences if γ < 1 [79]. Intuitively, it

10 CHAPTER 2. BACKGROUND

gives future rewards that are associated with more uncertainty less weight than immediate rewards
[79]. This framework imitates animal and human preference of immediate rewards over future
rewards [79] (i.e., a banana now is better than a banana later). The discount factor controls the
farsightedness of the agent: a γ = 0 will optimize only for immediate rewards (which will usually
lead to lower returns), and a γ close to 1 will assign future rewards more importance [90]. Both
return formulations in equations (2.2) and (2.3) are equal if γ = 1.

We can easily convert any episodic task to a continuing task by infinite-looping in the episodic
task’s terminal state and assigning a zero reward at each time step. Hence Sutton and Barto
[90] (along with most RL literature) simplify notation and use equation (2.3) as the primary return
formulation.

A central advantage of RL compared to SL is that the algorithm does not rely on explicitly
labeled input-output pairs. While SL would require a dataset of each correct action to be taken
in each possible state, RL algorithms learn by optimizing the cumulative reward they receive.
Using rewards as learning incentives is a powerful notion and makes RL an attractive and general-
purpose tool. In fact, in their reward-is-enough hypothesis, Silver et al. [89] state that "[i]ntelligence,
and its associated abilities, can be understood as subserving the maximisation of reward by an
agent acting in its environment" [89, p. 4]. The reward-is-enough hypothesis means that the sheer
maximization of reward gives rise to most if not all phenomena that we observe in artificial and
natural intelligence, such as perception, planning, memory, language, cooperation, and creativity
[89]. Whether RL is a tool for artificial general intelligence, that is, "the ability to flexibly achieve a
variety of goals in different contexts" [89, p. 8], remains an active area of research.

When designing an RL system, a key task is finding the right reward function R(st) that encodes
the desired behavior. Sutton and Barto [90] distinguish between sparse and non-sparse rewards.
Rewards are sparse when the agent does not receive a reward in every time step t, which can be
due to the inaccessibility of rewarding states or the nature of the reward function [90]. For example,
an agent that controls a football team in a simulated video game may receive sparse rewards
about whether or not the team shot a goal in a time step [79]. On the other hand, non-sparse
rewards provide intermediate feedback at each time step about the agent’s progress towards
achieving the desired behavior [90]. The process of providing intermediate rewards to guide the
agent’s learning is called reward shaping [64, 79]. In the football video game, one could provide
additional rewards about how close the ball is to the opponent’s goal or how often it was kicked
[79]. Generally, non-sparse rewards lead to faster learning [64]. Still, there is a risk that agents
end up collecting intermediate rewards (i.e., simply passing the football in front of the opponent’s
goal) rather than achieving the desired outcome (i.e., scoring as many goals as possible) [79].

2.1.5 Policies and Value Functions

Sutton and Barto [90] proceed by defining policies and value functions. The agent acts on the
environment according to a policy π(a|s). The policy is a function that maps the state s to the
probability of taking action a [90]. Most RL literature denotes the policy as πφ(a|s) whenever the
policy depends on parameters φ, which could be the weights of a neural network. Note that often

2.1. REINFORCEMENT LEARNING 11

the words agent, policy, or actor are used interchangeably in the RL literature.

Many RL algorithms are based on so-called value functions. There are two types of value
functions. The state-value function vπ(s) in equation (2.4) specifies the return that the agent can
expect from being in a particular state s and following the policy π thereafter [90].

vπ(s)
.
= Eπ [Gt | st = s] = Eπ

[∞∑
k=0

γkrt+k+1 | st = s

]
(2.4)

On the other hand, the action-value function qπ(s, a) in equation (2.5) defines the expected
return by taking the action a in state s and following the policy π thereafter [90].

qπ(s, a)
.
= Eπ [Gt | st = s, at = a] = Eπ

[∞∑
k=0

γkrt+k+1 | st = s, at = a

]
(2.5)

The expression from equation (2.4) is reformulated in equation (2.9) and we notice that the return
at time step t is recursively related to the return in the next step t+1 [90]. The state-value vπ(s) and
action-value qπ(s, a) function both satisfy the Bellman expectation equation in equations (2.10) and
(2.12), respectively [90]. The Bellman expectation equations specify that the value of a particular
state s or state-action pair (s, a) equals the expected immediate reward plus the discounted value
of the following state st+1 or state-action pair (st+1, at+1) [90]. Note how the equations (2.10) and
(2.12) also implement a recursive relationship. In equation (2.11), the expectation Eπ is calculated
by summing over all actions a ∈ A which the policy π(a | s) generates and over all successor
states s′ ∈ S that the transition model p(st+1|st, at) produces [88]. Similarly, in equation (2.13) we
sum over all successor states s′ and actions a′ to calculate the expected value [88].

vπ(s) = Eπ [Gt | st = s] (2.6)

= Eπ
[
rt+1 + γrt+2 + γ2rt+3 + · · · | st = s

]
(2.7)

= Eπ [rt+1 + γ(rt+2 + γrt+3 + . . .) | st = s] (2.8)

= Eπ [rt+1 + γGt+1 | st = s] (2.9)

= Eπ [rt+1 + γvπ(st+1) | st = s] (2.10)

=
∑
a∈A

π(a | s)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ
(
s′
))

(2.11)

qπ(s, a) = Eπ [rt+1 + γqπ(st+1, at+1) | st = s, at = a] (2.12)

= r(s, a) + γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π
(
a′ | s′

)
qπ
(
s′, a′

)
(2.13)

The Bellman expectation equations (2.10) and (2.12) give rise to a system of linear equations,
which can be solved analytically for small state and action spaces if the environment dynamics

12 CHAPTER 2. BACKGROUND

p(st+1|st, at) are known [88]. However, most interesting real-world problems require iterative
methods to solve for the value function of a given policy [88].

Through the Bellman expectation equations (2.10) and (2.12), we know how the value functions
are recursively related with themselves. Let us explore how the state-value and the action-value
function are connected with each other. If we know the action-value function qπ(s, a), we can
easily calculate the value of a state vπ(s) in equation (2.14) by summing over all actions a ∈ A
that a policy would take [88]. We can now use this definition to derive an expression of qπ(s, a) in
terms of vπ(s) in equation (2.15) by plugging equation (2.14) into the Bellman equation in (2.13).
Equation (2.15) states that if we know the value function vπ(s), the action-value of a state and
action qπ(s, a) is calculated as the immediate reward r(s, a) we get from taking that action a in
state s plus the discounted returns vπ(s) of the successor states s′ ∈ S that we reach according
to the transition model by taking action a in state s [88].

vπ(s) =
∑
a∈A

π(a | s)qπ(s, a) (2.14)

qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)vπ
(
s′
)

(2.15)

2.1.6 Optimal Policies and Optimal Value Functions

The value function introduced in equation (2.4) allows us to order policies by their performance
[88]. A policy π performs better than or equal than another policy π′ if vπ(s) ≥ vπ′(s) ∀s ∈ S [90].
According to this ordering, there is at least one optimal policy π∗ which performs better than or
equal to all other policies [88]. The optimal policy π∗ achieves the optimal state-value function
v∗(s) in equation (2.16) and the optimal action-value function q∗(s, a) in equation (2.17) [90]. The
optimal state-value function v∗(s) and the optimal action-value function q∗(s, a) are the maximum
value functions over all policies [88].

v∗(s)
.
= max

π
vπ(s) (2.16)

q∗(s, a)
.
= max

π
qπ(s, a) (2.17)

For the optimal state-value function v∗(s) we can rewrite equation (2.14) in a special form. The
Bellman optimality equation for the state-value function in equation (2.18) states that the optimal
value of a state corresponds to the value of the best action taken in state s by the optimal policy π∗
[90]. Sutton and Barto [90] reformulate to obtain the recursive relationship of the optimal value
function v∗(s) in equation (2.21). We can insert equation (2.18) into (2.15) to obtain the Bellman
optimality equation in (2.22).

2.1. REINFORCEMENT LEARNING 13

v∗(s) = max
a

qπ∗(s, a) (2.18)

= max
a

Eπ∗ [Gt | st = s, at = a] (2.19)

= max
a

Eπ∗ [rt+1 + γGt+1 | st = s, at = a] (2.20)

= max
a

E [rt+1 + γv∗ (st+1) | st = s, at = a] (2.21)

q∗(s, a) = E
[
rt+1 + γmax

a′
q∗
(
st+1, a

′) | st = s, at = a

]
(2.22)

In RL it is desirable to know v∗(s) or q∗(s, a). If the transition model p(st+1|st, at) is known and
the Markov property holds, we can do a one-step look-ahead search on v∗(s) over all actions [90].
The optimal policy π∗ is to select the action with the highest return as predicted by v∗(s) and, in RL,
this is often called acting greedily with respect to the value function [90]. Note that computational
resources may be a limiting factor for exhaustive look-ahead searches and the above assumptions
rarely hold for real-world problems [90].

Knowing the optimal action-value function q∗(s, a) is even more desirable, since not even a
look-ahead search is necessary [90]. The MDP is considered solved once the optimal action-value
function q∗(s, a) is known and we can directly deduce the optimal policy π∗ in equation (2.23) [88].

π∗(a | s) =

1 if a = arg max
a∈A

q∗(s, a)

0 otherwise
(2.23)

The optimal policy π∗ in equation (2.23) directly select the action that maximizes the return
or if there are multiple optimal actions it assigns a non-zero probability to only those actions
[90]. If q∗(s, a) is known, the policy can achieve this without knowing the environments dynamics
p(st+1|st, at) or the returns of successor states [90]. Similar to the Bellman expectation equations
(2.10) and (2.12), the Bellman optimality equations (2.21) and (2.22) can be analytically solved to
obtain q∗(s, a) if the environment dynamics are known and the MDP is finite. However, as noted
before, these assumptions rarely hold for real-world problems. Many RL algorithms attempt to
learn approximations of the optimal action-value function q∗(s, a) instead (e.g., Q-learning [93,
97]).

14 CHAPTER 2. BACKGROUND

2.1.7 Soft Actor-Critics

The soft actor-critic (SAC) [23] algorithm is a state-of-the-art method for searching the optimal
policy π∗ in RL problems. The algorithm has several characteristics, and explaining them also
allows us to explore some further RL terminology.

• SAC [23] is an actor-critic method. The actor represents the policy, while the critic approxi-
mates the state-value function v(s) [90] or the action-value function q(s, a) [23]. The critic’s
estimations are used as a proxy to update the actor towards producing actions that yield
higher expected returns.

• The stochastic policies that SAC [23] generates are soft, meaning that they generate
a non-zero probability for selecting all actions in all states (more formally: π(a|s) > 0

∀s ∈ S, ∀a ∈ A(s)) [90].

• SAC [23] is off-policy which means that it can reuse past experience. On-policy algorithms
such as Trust Region Policy Optimization (TRPO) [80] or Proximal Policy Optimization
(PPO) [82] rely on new samples to perform iterative improvements to the policy. Off-policy
algorithms are usually more sample efficient than on-policy methods [23]. However, off-
policy methods tend to be more prone to instability especially in combination with non-linear
function approximations [50].

• The SAC [23] framework is a model-free RL approach. A model in RL allows making
predictions on how the environment reacts to certain stimuli [90]. For example, from a
given state and action, a model could approximate the expected next state and reward [90].
Model-free approaches make no assumptions on the behavior of the environment and are
purely based on trial-and-error learning [90].

Maximum Entropy Reinforcement Learning

The common optimization objective in RL is the expected discounted return Gt in equation (2.3).
Haarnoja et al. [23] extend their objective J(π) in equation (2.24) with an entropy regularization
term αH (π (· | st)). This framework is referred to as maximum entropy RL in the literature [22,
101]. The state-action marginal ρπ in equation (2.24) is the probability distribution of the variable
collection (st,at) produced by the policy π. The optimal policy π∗ in equation (2.25) yields the
highest return J(π) of all policies [23]. Note that equation (2.24) states the return for a finite
horizon [23]. The formulation for infinite horizons and discounted rewards is more involved and is
stated in the paper [23].

J(π) =

T∑
t=0

E(st,at)∼ρπ [r (st,at) + αH (π (· | st))] (2.24)

π∗ = arg max
π

J(π) (2.25)

2.1. REINFORCEMENT LEARNING 15

Equation (2.26) uses the Shannon entropy [86] from information theory to measure the random-
ness of the actions a generated by the stochastic policy π [66]. A policy with a larger H produces
more unpredictable actions. Hence optimizing the objective J(π) in equation (2.25) yields a policy
that collects much reward while acting as randomly as possible [23]. The temperature parameter α
weighs the entropy term and thereby determines the stochasticity of the learned policyH (π (· | st))
[23]. The α is a hyper-parameter of the SAC [23] algorithm. It needs to be carefully adjusted for
the task at hand which can be done either manually [22] or via an automatic tuning method [23].

H (π (· | st)) = Ea∼π(·|s)[− log(π(a | s))] (2.26)

A common issue in RL is the exploration versus exploitation trade-off. An agent must exploit to
generate high returns based on its current experience and beliefs of the world, while it must also
explore to find behaviors that yield even higher returns [90]. However, exploring the world comes
with the potential risk to collect less reward, and hence RL algorithms need to carefully balance to
what extent they exploit and explore [90].

Haarnoja et al. [23] note that using the maximum entropy framework has several advantages.
First, the entropy term in the objective function directly incentivizes the policy to explore the state
and action space more broadly [23] and thereby finds an elegant solution to the trade-off between
exploitation and exploration in RL. Other approaches, for example, address the exploration issue by
providing external noise to the policy’s actions [20]. Secondly, in situations where multiple actions
are equally promising, the stochastic policy can capture all of them by yielding high probabilities for
all of these actions [23]. Thirdly, the authors mention that due to the improved exploration behavior,
the policies train faster than with the regular return formulations [23].

Policy Evaluation

Haarnoja et al. [23] continue by introducing the soft policy iteration framework. Policy iteration
is a dynamic programming algorithm to find an optimal policy π∗ in RL problems by alternating
between a policy evaluation and a policy improvement step [90]. In the policy evaluation step, the
current value function of the policy is estimated, while in the policy improvement step, the policy is
updated to yield actions that yield higher returns as expected by the value function [90]. These two
steps are repeated until convergence to find the optimal policy and the optimal value function.

For the policy evaluation step in equation (2.27), Haarnoja et al. [23] compute the soft action-
value Q of a fixed policy π iteratively using the Bellman operator T π. Equation (2.27) consists of
the reward r (st,at) collected by performing action at in state st plus the soft discounted expected
value V (st+1) of the following state st+1. Equation (2.27) therefore is a reformulation of the
Bellman equation (2.15) with the Bellman operator, to account for the fact the the current value
function estimate is not yet a true value function. Iteratively applying the Bellman operator T π will
yield the true value function [90]. The soft state-value function V in equation (2.28) is the expected
value from state st+1 by following the policy’s actions thereafter plus how randomly the policy acts
by doing so [23]. The value function V formulation closely resembles the formulation in equation

16 CHAPTER 2. BACKGROUND

(2.14) but includes the additional entropy term.

T πQ (st,at)
.
= r (st,at) + γEst+1∼p [V (st+1)] with (2.27)

V (st) = Eat∼π [Q (st,at)− α log π (at | st)] (2.28)

Policy Improvement

In the policy improvement step, the authors [23] want to update the policy to produce higher returns
based on the estimates of the current value function. In equation (2.29), the updated policy πnew is
a policy π′ that minimizes the Kullback–Leibler (KL) divergence between its probability distribution
and a function of the Q-value estimate [23]. This function involves an exp(·) term that gives larger
Q-values substantially more weight than smaller ones, guiding the learning process to produce
high returns quickly. The term Zπold normalizes the distribution [23], making sure it sums to one.
The new policy π′ is constrained to a family of distributions Π, for example, Gaussians [23]. A
small KL divergence in equation (2.29) means that high probability will be given to those actions
by the new policy πnew which also receive a high estimated return by the action-value function.

πnew = arg min
π′∈Π

DKL

(
π′ (· | st) ‖

exp
(

1
αQ

πold (st, ·)
)

Zπold (st)

)
(2.29)

Optimizing Critic

The soft policy iteration algorithm by Haarnoja et al. [23] will provably converge to the optimal
policy and the optimal value function [23]. However, computing the algorithm in its exact form
is only tractable in the tabular case while for continuous problems we have to rely on function
approximations [23]. Therefore, the authors [23] parametrize the policy πφ (at | st) and the
action-value function Qθ (st,at) with weights of a neural network φ and θ, respectively.

Firstly, Haarnoja et al. [23] explain that the parameters for the approximated action-value function
Qθ (st,at) are updated by minimizing the squared Bellman residual of the soft action-value function
in equation (2.30) where D is the replay buffer storing states, actions, and rewards. Haarnoja et
al. [23] note that the value function V is implicitly parametrized by the parameters θ via equation
(2.28). For Vθ̄, the authors [23] use the parameters θ̄, an exponentially moving average of the
parameters θ that stabilizes training [58].

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (st,at)−

(
r (st,at) + γEst+1∼p [Vθ̄ (st+1)]

))2] (2.30)

Let us analyze equation (2.30) more deeply. Recall that we would like to obtain the Bellman
optimality equation for the action-value function in equation (2.22). However, equation (2.22)
does not yet hold for the approximated action-value function Qθ (st,at) since it is not optimal.
Hence, the squared Bellman error effectively calculates the squared difference of the two sides of
equation (2.22) while also integrating equation (2.18). In other words, equation (2.30) expresses

2.1. REINFORCEMENT LEARNING 17

the difference between the estimated return that our current action-value function Qθ (st,at)

predicts and the actual reward r (st,at) that was received plus the discounted expected return of
the following state γEst+1∼p [Vθ̄ (st+1)].

Interestingly, neuroscience research suggests that dopamine neurons elicit signals that encode
a prediction error similar to the Bellman error [83, 90]. Dopamine neurons are activated if the
reward is greater than predicted, they remain uninfluenced if the reward is as expected, and they
are depressed if the reward is less than predicted [83]. Hence, if the reward is different than
expected, the dopamine neuron sends an alerting message which may contribute to a modification
of synaptic transmission to improve future reward prediction [83].

The Bellman error is zero for the optimal action-value function. To iteratively update the action-
value function Qθ (st,at) towards parameters θ that produce lower Bellman errors, Haarnoja et
al. [23] compute the gradient of the Bellman error using the chain rule in equation (2.31). The
algorithm trains two action-value functions with parameters θ1 and θ2 and consequently uses the
minimum of both to deal with the overestimation bias of value-based methods [23]. The parameters
θ1 and θ2 are found by iteratively applying stochastic gradient descent θi ← θi − λQ∇̂θiJQ (θi) for
i ∈ {1, 2} [23].

∇̂θJQ(θ) =∇θQθ(st,at)
(
Qθ(st,at)

− (r(st,at) + γ(Qθ̄(st+1,at+1)− α log(πφ(at+1 | st+1))))
) (2.31)

Optimizing Actor

Haarnoja et al. [23] continue by developing an approach to update the policy’s parameters φ. They
suggest to directly minimize the expected KL divergence in equation (2.32) [23]. After dropping the
normalizing distribution because it is independent of φ and multiplying by α they obtain equation
(2.33)[23]. To make the function differentiable with respect to the parameters φ in equation (2.34),
they apply the reparametrization trick and obtain a sample from the policy at = fφ (εt; st) with a
noise vector εt sampled from, for example, a Gaussian [23].

Jπ(φ) = Est∼D

[
DKL

(
πφ (· | st) ‖

exp
(

1
αQθ (st, ·)

)
Zθ (st)

)]
(2.32)

= Est∼D
[
Eat∼πφ [α log (πφ (at | st))−Qθ (st,at)]

]
(2.33)

= Est∼D,εt∼N [α log (πφ (fφ (εt; st) | st))−Qθ (st, fφ (εt; st))] (2.34)

Finally, Haarnoja et al. [23] can take the gradient of the objective Jπ(φ) in equation (2.35)
and use it to obtain the desired updated φ parameters using stochastic gradient descent φ ←
φ− λπ∇̂φJπ(φ).

∇̂φJπ(φ) =∇φα log (πφ (at | st)) +

(∇atα log (πφ (at | st))−∇atQ (st,at))∇φfφ (εt; st)
(2.35)

18 CHAPTER 2. BACKGROUND

2.2 Simulating Robotic Grasping

2.2.1 Motivation

The motivation behind simulating a robotic setup is straightforward. Firstly, simulations allow
researchers to test robot controllers before deploying them on expensive and potentially dangerous
real-world equipment. Secondly, simulations can run faster than in real-time and in parallel. Fast
simulations are beneficial when looking for corner cases that rarely happen or when working with
ML algorithms that often require large amounts of data. Thirdly, researchers can collaborate more
easily when developing control software for simulated robots.

2.2.2 Robotic Hand

In this research effort, we work with a three-fingered robotic hand, the ReFlex TakkTile by Right-
Hand Robotics [77], which is a commercial product that originated in the i-HY hand [65] research
project. Figure 2.3 shows images of the anthropomorphic gripper. The robotic hand has one
bending DOF in each of the three fingers and one finger separation DOF between the two ad-
jacent fingers. Each finger consists of a proximal and a distal finger segment connected via an
under-actuated rubber flexure. Each of the bending DOF is tendon-driven: a tendon fixed to the
distal finger runs inside the proximal finger segment and is pulled by a motor in the hand’s base.
The finger separation DOF is implemented via a direct gear transmission to a motor. This fourth
DOF allows the hand to perform cylindrical, spherical, and pinch grasps. Rubber coats the fingers
to increase friction, and the fingers have a round profile.

(a) Robotic hand grasping
a coffee container.

(b) Hand mounted on robot
arm (source Koenig et al. [39]).

Figure 2.3: Images of the ReFlex TakkTile robotic hand.

Similar to the i-HY hand [65], the ReFlex TakkTile features barometric pressure sensors inte-
grated into the rubber coating of the robotic fingers. Figure 2.4 shows an image of a finger with the
tactile sensors revealed on the proximal segment. There are five pressure sensors on the proximal

2.2. SIMULATING ROBOTIC GRASPING 19

link and four on the distal one. Hence, there are nine tactile sensors per finger and 27 sensors in
total. Note that the tactile sensors output a one-dimensional value. Hence it is only possible to
measure normal forces and not tangential forces. If the contact is on an area of the finger that a
tactile sensor perceives well, its readings are highly accurate. However, once the contact is located
elsewhere (e.g., on the side of the finger), the tactile sensor will output lower or no pressure values.
While the rubber-coated tactile arrays produce low noise (< 0.01 N) and have excellent hysteresis
behavior [92], the tactile signals from finger-integrated sensors in real grasping scenarios are
highly variable despite good experiment repeatability [96]. Hence, the tactile arrays in their current
state are not reliably applicable for assessing grasp stability on manipulation systems.

Figure 2.4: Barometric pressure sensors integrated in the robotic fingers.

On top of the tactile sensors, the hand features magnetic angle encoders that measure each
proximal finger joint position. There is no dedicated sensor to measure finger separation. However,
the motors report their current position, which is a proxy of the measured finger separation. There
is no joint encoder at the distal flexure, and hence its accurate position is unknown. However, it
can be inferred from the difference between the motor positions and the measured proximal joint
positions. This calculation remains an estimate, which makes it hard to apply classical grasp control
algorithms [27]. A rough estimate of the contact locations and contact normals can be inferred
through forward kinematics using the joint position data and the hand’s kinematic information.

2.2.3 Simulation Software

Gazebo Simulator

We use the Gazebo [40] simulation platform in this project. Gazebo is a 3D robot simulator that is
widely used in the robotics research community. A 2014 study found that Gazebo was the most
popular robot simulation tool among the survey participants [30]. Gazebo is an open-source effort
led by Open Robotics and has an active community of developers. Figure 2.5 shows the GUI of

20 CHAPTER 2. BACKGROUND

Gazebo with the simulated robotic hand and a cylinder. Gazebo offers various simulated sensor
modalities such as laser scanners, RGB cameras, depth cameras, Inertial Measurement Units
(IMU) and contact sensors. The DARPA Virtual Robotics Challenge marked an important milestone
in Gazebo’s history [28] and contributed to its wide adoption among the robotics community.
Gazebo is well integrated with the Robot Operating System (ROS) [74], an efficient communication
framework for various robot components.

Figure 2.5: Gazebo GUI with simulated ReFlex TakkTile and a cylinder.

Simulating Grasping

Simulating complex contact scenarios can lead to unwanted vibrations and unstable simulations
[28], [91]. The grasping scenario is complex because contact points from various robot links are
generated on opposing sides of a single, freely moving object. In early experiments, we frequently
observed resonance when grasping an object since any errors that occur while resolving the
contact forces on one side of the grasp immediately transfer to the opposing side via the object,
which may, in turn, lead to even greater errors that escalate over time. This situation is prone
to numerical instability and often leads to unrealistic simulation outcomes. Often, considerable
parameter tuning is necessary to stabilize grasping simulations. The following factors may help
alleviate stability problems: low stiffness in the robot model, high damping of joints, accurate inertia
values, low mass differences between the individual robot links, and good solver parameters.

Gazebo integrates four different physics engines into their simulation environment: a custom
version of Open Dynamics Engine (ODE) [16], Simbody [87], Bullet [11] and Dynamic Animation

2.2. SIMULATING ROBOTIC GRASPING 21

and Robotics Toolkit (DART) [43]. Some physics engines are more robust than others for simulating
grasping. While Open Robotics claims that ODE is the most popular rigid body dynamics engine
[16], it performs poorly on grasping tasks compared to other engines. Taylor et al. experimentally
showed that DART outperforms ODE by a large margin for simulating grasping [91]. It is difficult to
pinpoint why some physics engines work better than others since numerous variables can affect
a simulation’s outcome (e.g., iterative method non-convergence, rounding errors, regularization
errors, imprecise contact information [91]).

Physics Engine Differences

The following section highlights some of the differences between Gazebo’s physics engines. There
are two main paradigms for modeling rigid body dynamics. Penalty methods resolve contact
forces by enforcing a spring-damper system upon contact that applies restorative forces that
are proportional to the amount of inter-penetration of the two colliding objects. On the other
hand, constraint-based methods resolve contact forces based on a Linear Complementarity
Problem (LCP) that enforces constraints, for example for non-penetration. Penalty methods require
very small time-steps for stable simulations, whereas the constraint-based formulation is more
numerically stable due to less stiffness in the simulated system [28]. Simbody is based on penalty
methods, while ODE, Bullet, and DART are constraint-based methods. The Simbody engine
is not a good choice for simulating grasping since it is more than 100 times slower than the
above-mentioned constraint-based methods [71]. Taylor et al. explicitly exclude Simbody from
their experiments because simulating a grasping scenario would last in "the order of days" [91].

A further difference is how the ordinary differential equations that arise from spring-damper
systems are numerically solved. Spring-damper systems are common at the joints of articulated
robots. Bullet uses an explicit solver method, while all other engines use implicit numerical solvers.
Explicit methods are easier to compute; however, they are prone to numerical instability [71].

Another important difference between Gazebo’s physics engines is the coordinate representation.
Consider the example in Figure 2.6 which shows a simple robotic finger with two revolute joints.
The finger is in contact with another object at point p. ODE and Bullet describe this situation in
maximal coordinates. This representation relies on the fact that a rigid body has six DOF (three for
the position and three for the orientation) in a three-dimensional cartesian space. Hence, in the
maximal coordinate representation, the pose of both links is described by 12 DOF, which gives
rise to a sparse mass matrix M ∈ R12×12. The kinematic relation between both links and the
world reference frame must be explicitly modeled. Each revolute joint has one DOF and therefore
constrains the remaining five DOF between the connected links. Overall, ten constraints for the two
revolute joints have to be added to the LCP to constrain the links’ relative motion. This formulation
is simple to implement. However, undesirable simulation outcomes can occur due to numeric
errors: a common example is the separation of body parts due to unmet joint constraints. ODE
and Bullet use this coordinate representation. DART and Simbody use generalized coordinates,
which provide a much more compact representation of articulated robots. The robotic finger in
Figure 2.6 can be fully described by the joint angles (ξ1, ξ2). No additional constraints need to

22 CHAPTER 2. BACKGROUND

be enforced since the kinematic relation is implicit in the formulation. This representation gives
rise to a dense mass matrix M ∈ R2×2 [71]. A problem description in generalized coordinates is
beneficial when working with articulated robots that consist of many links and joints.

ξ2
ξ1

p

d1
d2

d3d4
d5

d6

d7
d8

n

D = [d1…d8]p

Figure 2.6: Robotic finger with two revolute joints and contact point p.

In initial experiments we validated the results from [91] and concluded that DART is the most
suitable physics engine for simulating grasping. We therefore use it in all of our simulations. We
find that several related works in robotic grasping also chose the DART physics backend over the
default ODE engine in Gazebo [1] [48].

2.2.4 The ReFlex Simulation Stack

The long-term goal of this research project is to train RL algorithms in the simulation where data is
abundant and easy to generate and to test these policies on the real robot. Therefore, a major task
of this research project was building a simulation framework, named ReFlex Stack, that enables a
seamless interplay between the simulated world and the real robot hardware. Figure 2.7 shows
the system design of the ReFlex Stack.

tf/ "world" to "reflex"
[geometry_msgs/TransformStamped]

High Level
ROS services

ReFlex Simulator
Gazebo

gazebo/*_position_controller/command
[std_msgs/Float64]

Wrist Controller

gazebo/finger*_position_controller/command
[std_msgs/Float64]

Finger Controller

gazebo/*_*_pad_sensor_bumper
[gazebo_msgs/ContactsState]

Sensor Listener

gazebo_ros_control
Plug-In

gazebo_ros_bumper
Plug-In

gazebo/finger*_position_controller/state
[control_msgs/JointControllerState]

reflex_takktile/command_position
[reflex_msgs/PoseCommand]

ReFlex Interface

Keyboard
Teleoperation

reflex_interface/hand_state
[reflex_interface/HandStateStamped]

State Module

Command Module

reflex_takktile/hand_state
[reflex_msgs/Hand]

reflex_takktile/sim_contact_frames
[sensor_listener/ContactFrames]

Figure 2.7: System design of ReFlex Simulation Stack.

The simulation stack in Figure 2.7 consists of the ReFlex Simulator and the ReFlex Interface
modules. The below points discuss how these two core modules and the software architecture
satisfy the requirements of the software stack.

2.2. SIMULATING ROBOTIC GRASPING 23

Requirements of ReFlex Simulator

1. Requirement : Provide accurate simulation of robotic grasping with the ReFlex TakkTile.

Implementation: We obtain physically realistic simulation of robotic grasping by using the
DART [43] physics engine in the ReFlex Simulator module. We can obtain other information
such as joint positions or contact positions and normals with machine precision from the
Gazebo [41] simulation platform.

2. Requirement : Achieve a seamless interplay between the real ReFlex hand and the simulation
to simplify transferring policies from the simulation to the real world.

Implementation: The ReFlex hand offers a ROS [74] communication interface. Users send
position commands to the hand via the ROS topic reflex_takktile/command_position
and receive its state (e.g., joint positions, tactile sensor pressures, motor positions) by
listening to the topic reflex_takktile/hand_state. As shown in Figure 2.7, the ReFlex
Simulator module uses the exact same topics and message definitions as the real hand
does. The Finger Controller ROS node listens to the command topic that also the real hand
would offer and controls joints with a proportional–derivative (PD) controller implemented
by a Gazebo plug-in. The Sensor Listener node accesses the low-level contact information
from Gazebo plug-ins and transforms it into the same message structure that the real hand
also uses and publishes it under the respective topic.

3. Requirement : Offer an interface to obtain the exact, simulated contact information.

Implementation: The real robotic hand only offers coarse contact sensing through pressure
sensors at sparse locations on the finger. Hence, the message definition reflex_msgs/Hand
only includes a subset of the contact information that would be obtainable from the simulation.
Gazebo can output contact data at a higher resolution than the real robot hand can, and we
publish this exact contact data (e.g., contact positions, normals, 3-dimensional force vectors,
and contact frames) under the topic reflex_takktile/sim_contact_frames.

4. Requirement : Make the simulation framework applicable to any robotic arm.

Implementation: As discussed in section 1.2, a robot arm is an intricate part of a robotic
grasping setup. However, as shown in Figure 2.5 we do not explicitly simulate a robotic arm.
We directly control the pose of the simulated ReFlex TakkTile through the Wrist Controller
node in the ReFlex Simulator. Thereby, we reduce the computational load and keep our
simulation framework as generic as possible. Users have to publish the desired wrist pose
to the tf tree, a ROS feature that stores any relative coordinate transformations. The Wrist
Controller node will consequently send the simulated hand to this pose using a PD controller.

5. Requirement : Provide a simple way to spawn geometric primitives (cuboids, cylinders,
and spheres) and easily control their size to simulate different starting conditions for RL
algorithms.

24 CHAPTER 2. BACKGROUND

Implementation: As part of the ReFlex Simulator, we provide roslaunch scripts that auto-
mate the spawning process and allow to parametrize the object size and mass. For example
to spawn a sphere, users type roslaunch description object.launch object_type:=
sphere sphere_radius:=0.06 object_mass:=0.4 in their terminal.

6. Requirement : Model the distal flexure, the tactile sensors and the hand geometries.

Implementation: By default, Gazebo does not support simulating deformable objects. How-
ever, the distal flexure on the real hand is under-actuated and deforms non-linearly. Our
simulator provides basic modeling of the under-actuation. We introduce two additional revo-
lute joints at each finger: one between the proximal finger segment and the flexure and one
between the flexure and the distal finger segment. We power the joints with virtual motors
that execute 20% of the position command of the proximal joint each. Thereby, the hand can
perform caging grasps. We model the tactile sensors by separating the finger into nine virtual
segments that correspond to the fields of view of each sensor and output the normal force
as the sensor’s pressure reading. Furthermore, we model the hand’s geometry. Depending
on the user’s preference, the ReFlex Simulator can either use accurate three-dimensional
(3D) models of the hand’s geometry or simplifying cuboids that serve as an approximation of
the hand’s geometry to reduce computational load.

Requirements of ReFlex Interface

1. Requirement : Calculate grasp stability using techniques from grasp analysis.

Implementation: We use classical methods from grasp analysis (like the metrics in [78]) to
quantify a grasp’s stability. Section 4.1 will review the implemented analytic grasp stability
metrics in detail. The State Module in the ReFlex Interface processes the exact contact data
from the reflex_takktile/sim_contact_frames topic to calculate several quantities from
grasp analysis (e.g. Grasp Wrench Space (GWS) [19] or the grasp matrix G [73]). Finally, the
calculated grasp quality metrics are published under the reflex_interface/hand_state
ROS topic which can then be processed by grasping controllers.

2. Requirement : Provide a high-level interface to control the simulated and the real robot hand.

Implementation: It is useful to automate some functions that are commonly used by grasping
controllers. These functions are pre-configured grasp positions (open, close, pinch, spherical
open, and spherical close) and other high-level commands ("close fingers until they made
contact", "make an increment to the current finger position", and "tighten the grip"). The
Command Module offers these functions as ROS services and Listing 2.1 shows their
respective names. Users can trigger these services conveniently via the command line as
shown in Listing 2.2 or programmatically in their controllers.

2.2. SIMULATING ROBOTIC GRASPING 25

/reflex_interface/open
/reflex_interface/close
/reflex_interface/pinch
/reflex_interface/spherical_close
/reflex_interface/spherical_open
/reflex_interface/close_until_contact
/reflex_interface/position_increment
/reflex_interface/tighten_grip

Listing 2.1: A list of ROS services that the ReFlex Interface offers.

rosservice call /reflex_interface/close_until_contact "{}"
rosservice call /reflex_interface/position_increment "{f1: 0.2, f2: 0.4,

f3: 0.3, preshape: 1.5, from_measured_pos: true, blocking: false,
tolerance: 0.01, time_out: 0.0}"

Listing 2.2: Calling ReFlex Interface ROS services from the command line.

3. Requirement : Offer a simple way to teleoperate the robot hand for debugging.

Implementation: The Keyboard Teleoperation node reads the user’s keystrokes and publishes
wrist pose increments to the tf tree. Furthermore, users can trigger the above ROS services
conveniently via pressing corresponding keys. The keyboard teleoperation helps users
debug their custom simulated environments. Further, they can easily check if a grasping
task is feasible through human teleoperation before writing autonomous controllers.

4. Requirement : Make the software available open-source and facilitate an easy setup.

Implementation: The source code of the ReFlex Stack is publicly available1. Furthermore,
we provide pre-built Docker [55] containers to make the simulator setup as easy as possible
for other researchers. For more instructions on usage and setup, view the README.md file in
the repository’s parent directory.

1https://github.com/axkoenig/reflex_stack

https://github.com/axkoenig/reflex_stack

3 Related Works

Robotic grasping is an intensively studied subject. This chapter reviews relevant related works in
the field of tactile grasp refinement. Grasp synthesis algorithms and open-loop controllers, which
make up much of the literature, will not be studied as part of this review. Moreover, we will mainly
focus on multi-fingered robotic hands.

3.1 Taxonomy

Most closed-loop grasping controllers are classifiable using two factors.

1. Control Paradigm: Figure 3.1 shows that closed-loop grasp controllers can be grouped by to
their underlying control paradigm. Analytical approaches attempt to solve an optimization
problem formulated around geometric considerations, friction models, and equations of
motion [46] (e.g., [21, 95]). These models typically require accurate knowledge of the
underlying parameters such as friction coefficients or object and gripper pose, which may
be hard to obtain in real-world scenarios [56]. On the other hand, data-driven (also known
as empirical or learning-based) methods avoid an explicit problem formulation and address
robotic grasping by large-scale data collection and processing with ML algorithms [46]
(e.g., [5, 7, 8, 14, 26, 29, 33, 42, 56, 62, 99]). Efficient simulation environments, the rising
availability of computing power, and recent advancements in data-driven methods make
learning-based approaches especially appealing in modern robotics research. Furthermore,
hybrid approaches that combine learned models with analytic controllers exist (e.g, [13, 44,
67, 68, 94]).

Control Paradigm

HybridData-DrivenAnalytical

Figure 3.1: Control paradigms for closed-loop grasping controllers.

2. Input Data: Closed-loop grasp controllers can also be classified according to their input
data, as shown in Figure 3.2. Firstly, some methods primarily rely on tactile information from
contact sensors (e.g, [8, 14, 26, 29, 56, 62, 67, 99]). Moreover, visuotactile approaches
combine tactile and visual data from camera systems (e.g., [7, 17, 100]). Thirdly, some
approaches purely rely on vision systems to close the loop for robotic grasp adjustment (e.g.,
[5, 33, 42, 60, 61, 68]). While the primary research focus lies on vision-based approaches,

27

28 CHAPTER 3. RELATED WORKS

the research body on the sub-problem of tactile grasping is smaller. A search on Google
Scholar for the keywords "robot grasping vision" yielded 115000 total results, whereas the
keywords "robot grasping tactile" only returned 36200 publications (results as of October 11,
2021).

Input Data

VisualVisuotactileTactile

Figure 3.2: Input data for closed-loop grasping controllers.

In the following, we discuss the most prominent works that use data-driven controllers which
process tactile data for grasp refinement. We will not include works using visual information from
camera systems, as this project focuses on tactile grasp refinement. For a comprehensive overview
of other works which are less related to this project, the reader is referred to review papers on
tactile information [45] and ML [37, 46, 59] in robotic grasping.

3.2 Data-Driven Tactile Grasp Refinement

Chebotar et al. (2016) [8] propose a re-grasping approach based on spatio-temporal features and
RL. Firstly, they learn a grasp stability predictor from data collected on a real robot equipped with
one SynTouch BioTac [63] tactile sensor on each of the three fingers of the Barrett robot hand.
Each BioTac sensor consists of 19 electrodes that sense the compression of a surrounding liquid
via changes in electrical impedance. The authors create two-dimensional tactile images from the
electrode measurements. They incorporate both the spatial and the temporal dimension of the
tactile data sequence in a spatio-temporal extension of a Hierarchical Matching Pursuit, which is
an unsupervised feature-extraction method [2]. Then they predict the grasp outcome (i.e., success
or failure) from the extracted features of a lifting attempt with a Support Vector Machine (SVM) [25].
Furthermore, they learn a re-grasping policy which is used if the SVM algorithm predicts a grasp
failure. They control the six DOF gripper pose change using a linear combination of the learned
spatio-temporal features. To reduce dimensionality of the problem they apply Principal Component
Analysis (PCA) [32] to the extracted features. The weights of the linear combination are learned
with RL. They define a policy parametrized by the weights of the linear combination and optimize it
with the Relative Entropy Policy Search (REPS) algorithm [70]. The predicted grasp success is
their reward. After performing 1000 real-world grasps, they predict grasp success with an accuracy
of 93%. They train the policy on a cylindrical object and increase the grasp success rate from
40.2% without re-grasps to 97.1% after three re-grasps. Their approach performs 5% worse on
an unseen cylindrical object after three re-grasps. The authors present a generalization of their
approach in [9].

Hogan et al. (2018) [26] use a parallel plate gripper equipped with two GelSlim sensors [15],
which produce images of tactile imprints on the device’s contact-sensitive pads. Their contribution

3.2. DATA-DRIVEN TACTILE GRASP REFINEMENT 29

is two-fold. First, they learn a grasp quality metric based on tactile images and 2800 real-world
trials. They train a ResNet50 [24], a convolutional neural network, in a supervised fashion to
predict a continuous value ∈ [0, 1] where large values indicate good grasp stability. Their quality
metric predicts the grasp’s quality with an accuracy of 85% on known objects and 75% on unknown
objects. Secondly, they propose a re-grasping strategy by employing the previously learned metric.
They simulate the tactile imprints that different gripper movements would generate via image
transformations. Consequently, they analyze these images with the learn grasp quality predictor
and select the gripper movement which yields the highest grasp stability. They assume that the
object stays in place during the refinement motion and that the two-dimensional transformation of
the original image describes the re-grasping action. Their final approach obtains success rates of
approximately 60% to 90% on unseen household objects.

Murali et al. (2018) [62] present an approach for blind grasping and re-grasping of unknown
objects. They use an adaptive three-fingered Robotiq hand with one high-quality force sensor
mounted on each fingertip to obtain haptic data. They collect a publicly available dataset with
RGB frames, haptic sensor data, material labels, and grasping actions and outcomes from 7800
grasp interactions. Initially, they place an object inside a box, and the robot roughly localizes
the object by monitoring collisions that occur during sweeping motions of the gripper. The robot
then performs an initial grasp which is likely to be unstable. A tactile grasp refinement algorithm
performs iterative re-grasps in a second stage as long as the estimated grasp quality is below a
certain threshold. Murali et al. use a recurrent auto-encoder to learn a low dimensional embedding
of the time series of gripper position control signals and measured forces at each finger. They use
this embedding as inputs for two neural networks. The first network predicts grasp stability as a
scalar p ∈ [0, 1] and trains with a cross-entropy loss. In contrast, the second network predicts a
four-dimensional vector of gripper position and orientation changes parametrizing the re-grasping
action. They discretize the control interval of each DOF into five bins which allows them to train
the neural network in an SL setting with a cross-entropy loss function. They use the embedded
tactile features to classify seven materials with an accuracy of 42.86%. Furthermore, they show
that using the tactile re-grasping approach improves the baseline by 14% to achieve an overall
accuracy of 40% for the blind grasping scenario. Finally, they demonstrate that tactile re-grasping
enhances the performance of a vision-based approach by 10.6% to an overall visuotactile grasping
success rate of 61.9%.

Merzić et al. (2019) [56] demonstrate that leveraging contact feedback improves the performance
of grasping policies under object pose uncertainty. They propose a closed-loop controller based
on model-free deep RL. Their state space consists of the four joint positions of the three-fingered
Barrett Hand, three measurements for the object position, four for the objection orientation, and
six measurements for the linear and angular velocities of the object. For the experiments with
contact feedback, Merzić et al. add a 27-dimensional contact force vector to the state space
(three force components at each of the nine links of the hand). The RL agent’s actions are four
torque commands for each of the hand’s joints. The base of the hand remains fixed throughout the
episode. The episode lasts for 10 seconds in simulation time, and gravity is disabled. At the end of
the episode, the authors enable gravity and perform a drop test. Their reward signal consists of

30 CHAPTER 3. RELATED WORKS

the change of the total number of links in contact, the change in distance between the gripper’s
base and the object’s center of mass, regularization terms for the joint torques and object’s linear
velocity, the change in mean distance between fingertips and the object, and a binary reward for
the drop test. They use the TRPO [80] algorithm for all their experiments. Their dataset consists
of 5 objects with corresponding pre-grasp poses from the database presented in [35]. Their first
experiment trains one policy per pre-grasp and evaluates the controller on the previously seen
training set. Their results show that the controller learned with contact feedback outperforms the
controllers that do not get force feedback or follow more naive approaches such as open-loop
grasping with constant torque. In a second experiment, they train one policy for each object and
evaluate on a test set of unseen pre-grasps. In this scenario, they report a substantial drop in
average performance compared to the first experiment. A third experiment explains that adding
noise to the object pose during training can improve controller performance and generalizability.

Wu et al. (2019) [99] present a deep RL framework for closed-loop tactile grasp refinement.
They use the Barrett Hand, mounted on a Staubli-TX60 robotic arm, and train their algorithm in
a PyBullet [12] simulation environment. The hand has 24 tactile sensors on its palm and each
of its fingers. Their state vector contains the recent histories (last 20 time steps) of the absolute
values and the incremental changes of the binary tactile contacts, finger joint angles, and contact
positions. Their action space consists of a wrist rotation r ∈ [−π, π] and five random variables
∈ [0, 1]. The algorithm samples from a Bernoulli distribution given the random variables to trigger
five high-level motion primitives: (1-3) closing each of the three finger joints by a pre-defined angle,
(4) reopening the hand, and (5) lifting the hand. If the hand reopens, a new wrist position is defined
above the center of all contact locations, and the wrist is rotated by r to obtain a more stable grip.
When the algorithm closes a finger, the finger increment is relatively large at the beginning (0.4
rad) but is continuously refined throughout the training procedure via curriculum learning. Wu et al.
discretize their action space in this way because they argue that continuous robot control leads to a
greater sim-to-real gap due to more complex interaction dynamics. However, applying discretized
motions leads to an almost identical behavior in simulation and the real world. At the last specified
time step, a lifting attempt is automatically triggered. A lifting attempt ends the episode, and the
algorithm generates a binary reward that indicates if the lift was successful. A penalty is given if no
fingers close more than 0.2 radians after a reopening maneuver. They demonstrate an impressive
transfer of their policy to the real robot without retraining. They obtain grasp success rates of up to
98.7% on the real robot and outperform an open-loop baseline which relies purely on vision by
2.5% to 5.2% depending on the experiment. Finally, they show that their tactile controller robustly
handles calibration noise of up to 7.5cm and still achieves success rates of approximately 90%.
On the other hand, the baseline struggles to handle such cases as success rates are 10% to 20%.

Hu et al. (2020) [29] present a deep RL framework for tackling the problem of reaching, grasping,
and re-grasping in one unified policy. They use the PPO algorithm [82] to train a policy that controls
the end-effector velocity and finger torques of the Barrett Hand based on various information
obtained from the simulation environment. The algorithm’s input is the object position, the distances
from the hand’s fingertips to object key-points, the hand z-rotation, finger angles, and contact
force magnitudes as measured on the inside of the fingers. They put particular emphasis on their

3.3. COMPARISON 31

task-specific reward function, which consists of six terms. They output a high reward if (1) the
distance from finger to object key-points is low, (2) the normals of the key-points point towards
the object center, (3) many object key-points are contained within the convex hull of the hand
key-points, (4) the number of contacts is large, (5) the number of contacts on the outside of
the fingers is low, and (6) the object velocity is low. They show impressive results in simulation.
They train the policy by randomly spawning an object in the simulated world, and they apply a
disturbance force at a random point in time which pushes the object away if not grasped reliably.
The policy can grasp a static object at a 97% success rate while it can also dynamically grasp a
moving target and recover from failed grasping attempts at a success rate of 83%.

3.3 Comparison

Table 3.1 compares the selected related works.

Inputs

Firstly, several differences regarding the input space become apparent. While some works only
assume tactile feedback [8, 26] for their grasp refinement algorithms, others require perfect object
information [29, 56]. The approaches that require object data (e.g., the object’s pose or twist) are
those that were purely trained and tested in simulation [29, 56]. This observation supports our
argument that real-world grasping algorithms should avoid assuming object information in their
input, as this data is hard to obtain accurately in the real world. For instance, Hu et al. [29] assume
distance measurements between each fingertip and the closest object key-point. Obtaining this
information from camera systems is extremely difficult because occlusion (and self-occlusion) are
significant challenges. Multi-camera approaches can help with this problem but are complex to
integrate.

All presented works in Table 3.1 except Wu et al. [99] use the contact forces as their input in one
form or another. Wu et al. [99] only use binary contact signals and demonstrate that algorithms
trained without feedback on contact forces can reach impressive success rates of +95%. The work
by Wu et al. [99] is also the only algorithm transferred from simulation to the real world. It is known
that simulators are prone to producing unphysical behavior if the LCP gets numerically unstable
[28, 91]. Therefore the contact forces in simulated environments may not always be physically
realistic. Perhaps policies trained in simulations produce better sim-to-real performance when
provided with binary contact signals, which should be very close to the values that would also be
obtainable in real-world experiments.

Conclusion: We do not want to make any assumptions on object information in our algorithm’s
input. Even though our algorithms train in a simulation where object data is readily available, using
it would substantially hinder their applicability on real robotic hardware. Our algorithms should
purely rely on the joint position and contact data, which would be available from intrinsic sensing
on a robotic hand. Specifically, our experiments studying RQ 2 examine which type of contact data
is most helpful in grasping. For example, the investigation juxtaposes a binary contact framework

32 CHAPTER 3. RELATED WORKS

(similar to Wu et al. [99]) with a framework that receives information on normal forces (comparable
to [29]).

Outputs

The algorithms’ outputs differ by multiple factors. First, [8, 26, 62, 99] control the robot using
position commands, while [56] use the torque domain and [29] control the robot with velocity
commands. Merzić et al. [56] claim that controlling the hand with joint torques rather than position
commands makes the grasp more compliant. Other works argue that position control transfers
better to the real world because achieving a low sim-to-real gap with torque or velocity control
would require precise physical models [5].

Many works [8, 26, 62] purely adjust the wrist pose with learned controllers and actuate the
fingers through open-loop algorithms. On the other hand, Merzić et al. [56] only control the
fingers and fix the wrist in place. Presumably, this makes their grasping algorithm less adaptive
to calibration errors. Other works [29, 99] control both the wrist and the fingers simultaneously.
Of those algorithms that solely learn a gripper pose change [8, 26, 62] only Chebotar et al. [8]
predict the full six-dimensional change in gripper pose4(x, y, z, ξ, η, ζ). The other works limit their
analysis on top-down [26, 62] or side-ways [29] grasps and hence can leave some dimensions
un-actuated. Wu et al. [99] achieve gripper position changes via a hard-coded strategy that
analyzes the last contact points and defines a new gripper pose at some distance to these points.

Conclusion: We want to follow most related works in their decision to control the robot in
position space. We presume that mapping from contact points (in position space) to the torque or
velocity domain may be more complex to learn than keeping the inputs and the outputs in the same
domain. Furthermore, we want our algorithm to simultaneously update the fingers and wrist pose,
as we believe that only the interplay between both controllers can make robotic grasp refinement
truly efficient. Lastly, we do not want to restrict our algorithm to side-ways or top-down grasps
and hence wish to predict changes in the full gripper pose4(x, y, z, ξ, η, ζ). Humans who perfect
grasp refinement also update their wrist pose in all six dimensions and simultaneously update their
fingers to obtain a more stable grip.

Objective

Some works learn a custom grasp stability predictor and aim to maximize its score [8, 26, 62].
From Table 3.1 it is evident that these works also train in the real world. We hypothesize that these
authors needed a grasp quality measure tailored to their experimental setup. A learned metric
can more easily adapt to experiment-specific factors, while analytic grasp stability metrics may
be harder to implement on custom robotic hardware. Especially, Hogan et al. [26] would have
difficulty working with classical grasp stability analysis as they are working with tactile images
where contact positions and forces are not directly measurable. However, the frameworks trained
in simulation [29, 56, 99] rely on hand-crafted optimization objectives, which can get quite complex
as shown by the six-term reward function by Hu et al. [29]. More importantly, it is difficult to justify

3.3. COMPARISON 33

why, for example, a small "angle between hand key-point normals and vectors pointing from hand
key-points to object center" as in Hu et al.’s [29] work relates with grasp stability.

While all presented works in Table 3.1 except [99] use force measurements of some form in
their inputs, non of the papers explicitly uses them in their optimization objectives. However, from
grasp analysis, it is clear what contact forces are desirable for good grasp stability. It is therefore
not obvious why previous research did not integrate them into their optimization objectives.

Conclusion: All presented works in tactile and data-driven grasping use either learned grasp
quality predictors or manually engineering grasp stability cues. None of these optimization
objectives include analytic descriptions of physical models. However, it is essential to consider the
rich body of research on grasp analysis and analytical grasp quality metrics [78] in the context of
tactile grasping. While analytical grasp stability metrics are used in the context of grasp synthesis
and planning on parallel-jaw grippers [51, 52], and multi-fingered hands [98], their potential for
closed-loop grasping with RL remains to be explored. Hence, in our research, we aim to integrate
these well-justified metrics in reward functions for RL algorithms. To our knowledge, and by looking
at Table 3.1, no prior work attempted this before. Using such analytic grasp quality metrics could
avoid constructing complex reward functions as in [29] or sparse rewards as in [99], which are
known to be less sample-efficient [64]. Lastly, it is crucial to integrate feedback about the stability
of grasping forces in the algorithm’s reward functions. As discussed above, none of the analyzed
works includes an explicit assessment of the grasping forces in their optimization objective, and
hence our algorithms will explore this direction.

34 CHAPTER 3. RELATED WORKS

Paper Inputs Outputs Objective Algorithm
Chebotar
2016 [8]
Reality

Spatio-temporal tactile
features

Weights of a linear
combination that
maps inputs to grip-
per pose changes
4(x, y, z, ξ, η, ζ)

Maximize grasp suc-
cess predicted by a
learned stability esti-
mator

RL, REPS
[70]

Hogan
2018 [26]
Reality

Images of simulated
tactile imprints corre-
sponding to gripper
movements

Gripper position
change 4(x, y) along
grasping plane of
parallel plate gripper

Maximize grasp suc-
cess predicted by a
learned stability esti-
mator

SL

Murali
2018 [62]
Reality

Time series of gripper
position control signals
and measured forces
at each finger

Gripper position
and rotation change
4(x, y, z, ξ) along with
current grasp stability

Maximize grasp suc-
cess predicted by a
learned stability esti-
mator

SL

Merzić
2019 [56]
Simulation

Proximal joint angles,
object pose and twist,
contact force vector on
each link of robotic
hand

Joint torques of robotic
hand

Maximize (1) number
of links in contact and
(2) binary drop test out-
come
Minimize (1) distance
object to gripper, (2)
distance fingertips to
object, (3) joint torques
and (4) object velocity

RL, TRPO
[81]

Wu
2019 [99]
Both

Histories of binary con-
tact signals, finger joint
angles and contact po-
sitions

Absolute wrist rotation
angle (ξ) and probabil-
ities for closing fingers
by fixed position incre-
ment, for finger reopen-
ing and lifting

Maximize binary pick-
up reward at episode
end
Minimize finger re-
opening

RL, Soft
PPO [82]

Hu
2020 [29]
Simulation

Object position, hand
z-rotation, finger joint
angles, distances from
fingertips to closest ob-
ject key-point, contact
force magnitudes on in-
side of fingers

Hand translational ve-
locities in world (x, y)-
plane and rotational ve-
locity around world (z)-
axis (vx, vy, ωζ), finger
torques

Maximize (1) number
of contacts and (2)
number of object key-
points contained in the
convex hull of hand
and finger key-points
Minimize (1) distance
from hand key-points
to object key-points, (2)
angle between hand
key-point normals and
vectors pointing from
hand key-points to ob-
ject center, (3) number
of contacts on outside
of fingers, and (4) ob-
ject’s linear velocity

RL, PPO
[82]

Table 3.1: Overview of related works using data-driven approaches and tactile information. Reality
means that experiments were conducted on physical robot hardware, Simulation refers

to algorithms trained and tested only in simulation, and Both means that algorithms
were trained in simulation and deployed to real hardware (includes data from Koenig et

al. [38, p. 2]).

4 Reward Design and Grasp Refinement

This chapter investigates the potential of analytic grasp stability metrics as reward functions for RL
grasping controllers. Firstly, we will discuss grasp stability metrics from classical grasping theory.
Consequently, we describe the experimental setup in detail and present empirical results. The
discussion concludes this chapter with an answer to RQ 1 from section 1.3. The following chapter
is a revision of a publication by Koenig et al. [38] which is currently under review and partially
contains results from this paper.

4.1 Analytic Grasp Stability Metrics

4.1.1 Largest-Minimum Resisted Wrench

Ferrari and Canny’s [19] metric εw is among the most popular grasp stability metrics in the literature.
The metric measures the largest-minimum perturbing wrench that the grasp can resist given the
grasp’s friction constraints at the contacts. We will introduce the terminology of Ferrari and Canny’s
[19] paper, which will also be relevant for the following sections, and consequently define the
quality metric.

Terminology

Equation (4.1) defines the contact wrench vector wi ∈ Rp for each point-contact pi. The index i
refers to the i-th contact and there are nc contacts in total. A contact wrench vector wi consists
of a force component fi and a torque component τi at that contact. Ferrari and Canny [19] note
that in the planar case the dimension is p = 3 as the wrench vector consists of two orthogonal
force directions and one torque component that lies perpendicular to the force plane. In the 3D
case p = 6, since both forces and torques lie in a 3D space. In this project, we are working in a 3D
cartesian space and a multi-fingered hand, and therefore wi ∈ R6.

wi =

(
fi

τi

)
(4.1)

Coulomb’s law of friction [10] in equation (4.2) relates the tangential forces fi,t at contact pi with
the contact’s normal forces fi,n via a coefficient of friction µ. Oftentimes, a coefficient of static
friction µs and a coefficient of kinetic friction µk are introduced, where µs > µk means that the
tangential forces that the contact can resist decrease as relative motion begins [34]. However,

35

36 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

in Ferrari and Canny’s work [19] only a single coefficient of friction µ is used for simplicity. This
assumption is reasonable for hard and dry materials [34].

fi,t

= µfi,n for sliding contact

< µfi,n for static contact
(4.2)

The friction cone at contact pi shown in Figure 4.1 is a representation of Coulomb’s law of
friction [34]. All contact forces within the friction cone will result in static contact, whereas sliding
begins once the force vector coincides with the cone surface. In [19] and in many other works, the
friction cone is approximated as a friction pyramid spanned by m unit forces fi,j that define the
edges of the pyramid where i is the index of the contact point and j ∈ {1, 2, . . . ,m} is the index of
the friction cone edge. The number of friction cone edges m dramatically influences the accuracy
of the friction estimation: m = 4 leads to an approximated error of roughly 30%, while m = 8 gives
rise to a lower 8% error [3]. The accuracy of the friction estimation must be traded off with higher
computation times for larger values of m [3]. We use m = 4 to allow for a fast computation.

yi
xi

zi

fi,n fi, j

pi

fi,t

fi

oi
ti

ni

fi,n fi,j

pi

fi,t

fi

Figure 4.1: Friction cone at contact pi with m = 5 and the contact frame {ni, ti,oi}. The vectors
fi,j span the edges of the approximated friction cone. The force fi with its normal fi,n
and tangential component fi,t lies inside the friction cone (graphic adapted from [34]).

Ferrari and Canny [19] show in equation (4.3) that contact force fi may be represented as a
convex combination of the vectors fi,j that define the friction pyramid. Similarly, the reaction torque
τi = ri × fi, where ri is the vector pointing from the object’s center of mass pc to the point of
contact pi, can be expressed as a combination of the fi,j forces in equation (4.4).

4.1. ANALYTIC GRASP STABILITY METRICS 37

fi =
m∑
j=1

κi,jfi,j where κi,j ≥ 0 and
m∑
j=1

κi,j ≤ 1 (4.3)

τi =

m∑
j=1

κi,j (ri × fi,j) (4.4)

Ferrari and Canny [19] extend the concept of the friction cone to obtain a wrench cone, where
the contact wrench wi at contact point pi is represented as a convex combination of the wrenches
wi,j that result from the forces fi,j which span the friction cone. The wrenches wi,j define the
edges that span the approximated wrench cone. Finally, they compute the total wrench on the
object w as the sum of the wrenches on all nc contact points. These considerations yield equation
(4.5).

w =

nc∑
i=1

wi =

nc∑
i=1

m∑
j=1

κi,jwi,j with wi,j =

(
fi,j

ri × fi,j

)
∈ R6 (4.5)

Consequently, the authors [19] define the set of all possible wrenches on the object through
convex sets, known as the Grasp Wrench Space (GWS).WL∞ in equation (4.6) is the convex hull
of the Minkowski sum of all wrenches wi,j , and WL1 in equation (4.7) is the convex hull of the
union of all wrenches wi,j . Ferrari and Canny [19] note thatWL1 ⊆ WL∞ .

WL∞ = ConvexHull

(
nc⊕
i=1

{wi,1, . . .wi,m}

)
(4.6)

WL1 = ConvexHull

(
nc⋃
i=1

{wi,1, . . . ,wi,m}

)
(4.7)

The force-closure properties of a grasp can easily be analyzed using the GWS. Force-closure
means that there exists a combination of contact forces fi that satisfy the friction constraints and
which can compensate any object wrench [73]. A grasp is force-closure if the origin of the wrench
space 0 ∈ R6 is contained in the GWSW [19] whereW is eitherWL∞ orWL1 .

Quality Metric

Finally, Ferrari and Canny [19] define the quality of a grasp εw as the largest-minimum perturbing
wrench that the grasp can resist. Remember from equation (4.5) that w is the sum of all contact
wrenches wi. If a wrench w lies on the boundary of the GWS (i.e. w ∈ ∂W) a perturbing wrench
can directly lead to slippage and a failing grasp. The quality metric εw in equation (4.8) identifies
the magnitude of the smallest of those wrenches ‖w‖ that lie on the boundary ∂W of the GWS.
The metric is the distance from the origin of the wrench space to the closest hyper-plane ofW .
Geometrically, the quality metric can be interpreted as the radius of the largest sphere centered at
the origin and contained inW . The metric εw is bounded ∈ [0, 1] and greater values of εw indicate

38 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

higher grasp quality.

εw = min
w∈∂W

‖w‖ (4.8)

There exist directions in the GWS where the resisted wrench is larger, but the metric aims at
giving a lower bound of the maximum resisted wrench in all wrench directions. In other words, the
metric identifies the magnitude of the wrench in the "worst-case" scenario in which the largest
resisted wrench is minimized. The quality metric εw depends on the choice of the definition and will
yield different results forWL∞ andWL1 , respectively. We will use theWL1 definition throughout
this work.

4.1.2 Measuring Resistance to Pure Forces and Torques

A significant drawback of the wrench-based metric εw is the non-comparability of the units of
forces (in N) and torques (in Nm) [78]. Therefore, Mirtich and Canny [57] decouple the GWS and
propose two alternative metrics εf and ετ which evaluate how well a grasp can resist pure forces
and torques, respectively.

Planar Example

Let us define Mirtich and Canny’s [57] metrics using a planar example. Figure 4.2a shows a grasp
on an object with two contact points p1 and p2 and the approximated friction cones at the contacts.
The set of forces the contacts can apply to the object are now defined byWf in equation (4.9).
Note that, unlikeW from section 4.1.1,Wf only considers forces. Wτ in equation (4.10) defines
the torques that the grasp can theoretically apply to the object.

Wf = ConvexHull

(
nc⋃
i=1

{fi,1, . . . ,fi,m}

)
(4.9)

Wτ = ConvexHull

(
nc⋃
i=1

{τi,1, . . . , τi,m}

)
(4.10)

Mirtich and Canny’s [57] identify the largest-minimum resisted force εf and torque ετ in equations
(4.11) and (4.12), respectively. The motivation behind this is the same as in section 4.1.1. Figure
4.2b demonstrates that the quality metric is the radius of the largest ball centered at the origin that
is fully contained insideWf .

εf = min
f∈∂Wf

‖f‖ (4.11)

ετ = min
τ∈∂Wτ

‖τ‖ (4.12)

4.1. ANALYTIC GRASP STABILITY METRICS 39

p1

p2
n1

n2

f1,2

f1,1

f2,1

f2,2

fx

fy

ϵf

f1,1

f1,2

f2,1

f2,2
(a) A grasp with two contact points p1 and p2, contact

normals n1 and n2, and friction cone bases fi,j .

p1

p2
n1

n2

f1,2

f1,1

f2,1

f2,2

fx

fy

ϵf

f1,1

f1,2

f2,1

f2,2
(b) The metric εf is the radius of the largest

sphere fully contained insideWf .

Figure 4.2: Planar example of a grasp and stability analysis with εf (image source Koenig et al.
[38]).

3D Examples

Let us review examples for the calculation of εf and ετ on a three-fingered hand in three dimensions.
Figure 4.3a shows the simulated grasp with three contact points. We visualize the edges of the
approximated friction cone fi,j in Figure 4.3b where m = 4. The force component of the GWSWf

can be obtained by computing the convex hull over the vectors fi,j in bold and εf is calculated
as described earlier. Similarly, we plot the torques τi,j that result from the forces fi,j in Figure
4.3c. After constructing the convex setWτ using the τi,j vectors one can determine ετ . Notice
the different magnitudes of the forces (in N) and torques (in Nm) in Figures 4.3b and 4.3c. The
coefficient of friction for both plots is µ = 0.9.

Figure 4.4 briefly reviews some grasps and their corresponding qualities. A power grasp is a
grasp configuration in which the fingers wrap around the object, leaving no room for the object
to move [73]. Firstly, Figures 4.4a and 4.4b show how a power grasp is favored by the εf metric,
since more contact normals with new orientations are generated which consequently span a larger
Wf . If one of the adjacent fingers of the power grasp would lift off (as depicted in Figure 4.4c),
the grasp quality as calculated by εf will be almost unchanged because εf is solely a function of
the contact normals ni and the friction coefficient. The contact normals of the two-finger power
grasp from Figure 4.4c will generate a similarWf as the contact normals of the three-finger grasp
from Figure 4.4b. Hence, adding the third finger will offer little to no expansion ofWf . However,
a three-finger grasp is more stable in practice and can compensate more object torque. The ετ
metric solves this problem. It also considers the contact positions pi, and the object’s center of
mass pc. Therefore, adding the third finger improves the grasp quality, as shown in Figure 4.4d.

40 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

p1

p2

p3

x

z

y

(a) A grasp with three contact points p1, p2 and p3 (in blue) and contact normals (in green).

X 1.00.50.00.51.0
Y

1.0

0.5

0.0

0.5

1.0

Z

1.0

0.5

0.0

0.5

1.0

Normal n1
Normal n2
Normal n3

Forces f1, j

Forces f2, j

Forces f3, j

(b) Plot of forces fi,j that span the approximated friction cones and contact normals ni.

X 0.04
0.00

0.04
Y

0.04

0.00

0.04

Z

0.04

0.00

0.04

Normal n1
Normal n2
Normal n3

Torques 1, j

Torques 2, j

Torques 3, j

Lever r1
Lever r2
Lever r3

(c) Resulting torques τi,j , contact normals ni, and lever arms ri.

Figure 4.3: Analyzing a grasp and calculating fi,j and τi,j on whichWf andWτ are based.

4.1. ANALYTIC GRASP STABILITY METRICS 41

(a) Pinch grasp with quality εf ≈ 0.2. (b) Power grasp with quality εf ≈ 0.6.

(c) Two-finger grasp with quality ετ ≈ 0.01. (d) Three-finger grasp with quality ετ ≈ 0.023.

Figure 4.4: Grasp configurations with calculated grasp quality metrics.

4.1.3 Force-Agnostic Grasp Stability Metrics

Motivation for Force-Agnostic Metrics

The grasp quality metrics εw, εf , and ετ provide essential insights into the ability of the grasp
to balance external object wrenches. They focus their analysis on the theoretically applicable
contact forces that are satisfying the friction constraints and are concerned with the correct finger
placement to maximize the theoretically applicable object wrench in any direction. Therefore the
metrics effectively analyze the grasp’s geometric properties because contact positions and normals
are the main quantities influencing the calculated grasp stability. Moreover, since unitary force
vectors fi,j span the GWS (and the decoupled GWSWf andWτ), the proposed quality metrics
allow no assessment of the currently applied grasp forces. While this limitation may not be as
apparent in algorithms solely concerned with grasp synthesis, this is a fundamental problem in
real-time grasp control. Analyzing solely the grasp’s geometrical properties can be problematic
since a grasp with a high geometrical grasp quality can easily fail due to slippage (i.e., the grasp
fails since the applied contact forces were not adequate).

Buss et al. [6] define grasp stability in terms of the distance of the contact forces to the friction
cone. Inspired by this work, we present a metric that evaluates grasp quality based on contact
forces. We present two variants of this metric. We call our first metric based on the current
contact forces, contact normals, and the friction coefficient δcur. Moreover, our second metric δtask
additionally takes task wrenches and contact positions into account. In many grasping tasks, the

42 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

expected task wrenches can be estimated apriori or at least their upper bounds. For example,
for a gripping robot that needs to lift an item from one box into another, it is clear that the grasp
must resist the object’s weight and any inertial forces that occur while relocating the object, plus a
safety margin. While δcur is a general-purpose grasp quality metric, δtask is applicable when a task
definition exists. First, we discuss δcur before deriving δtask.

Grasp Stability Based on Current Contact Forces

Consider Figure 4.5 which shows an object grasped at two contact points p1 and p2. The current
contact forces fi,cur are in equilibrium and there are no external forces acting on the object. The
contact normals are ni. Remember that we refer to each contact with the subscript i and that
there are nc contact points (in this case nc = 2).

p2n1
f1,cur

n2
f2,cur

f̄1,cur

f̄2,curp1

p2
f1,cur

f2,cur

f̄1,task
f̄2,task

p1

f1,task

f2,task

fg

f1,add

f2,add

Figure 4.5: Friction cones, current contact forces fi,cur, contact normals ni and tangential force
margins f̄i,cur used to compute δcur. Note that we consider the true friction cone now,

and not the approximated one as in [19] (image source Koenig et al. [38]).

The vectors f̄i,cur are the tangential force margins, which represent the smallest additional
tangential forces that would lead to slippage at contact i. We can also think of the tangential
force margins as safety margins to the friction cone. We care most about the direction in which
the contact can take the least tangential force before slipping and therefore want to identify the
worst-case tangential force. Hence, the tangential force margin f̄i,cur is a lower bound over all
tangential forces that contact i can resist. Since the direction of the tangential force margins is
determined by the closest distance to the friction cone, we can limit our grasp stability analysis
solely on the magnitudes of these safety margins. For simplicity, we denote the magnitudes of
the tangential force margins ‖f̄i,cur‖ as f̄i,cur. A tangential force margin f̄i,cur > 0 means static
contact while f̄i,cur = 0 means undesired sliding behavior.

Let us discuss how to calculate the magnitudes of the minimum additional resisted tangential
forces f̄i,cur. Equation (4.13) shows that using Pythagoras’ theorem we can decompose the
magnitude ‖fi‖ of a generic contact force fi into the magnitude of the tangential force fi,t and the
magnitude of the normal force fi,n. Equation (4.14) computes the normal force fi,n using a scalar
projection of the contact force fi along the contact normal ni, which is a unit vector (i.e. ‖ni‖ = 1).
Finally, we insert equation (4.14) into (4.13) and solve for the magnitude of the tangential force fi,t
in equation (4.15).

4.1. ANALYTIC GRASP STABILITY METRICS 43

‖fi‖2 = f2
i,t + f2

i,n (4.13)

fi,n = fi · ni (4.14)

fi,t =

√
‖fi‖2 − (fi · ni)2 (4.15)

With equation (4.15) we can calculate the magnitude of the tangential force fi,t as a function
of the contact force fi and the contact normal ni . From the Coulomb friction law in (4.2) we
know that the maximum tangential force fmaxi,t a contact can resist before slipping is the friction
coefficient µ times the contact normal force fi,n. We write this relation in equation (4.16) and
obtain equation (4.17) by substituting equation (4.14) for fi,n.

fmaxi,t = µfi,n (4.16)

= µfi · ni (4.17)

Finally, the tangential force margin f̄i in equation (4.19) is simply the maximum allowed tangential
force fmaxi,t from equation (4.17) minus the actual tangential force fi,t from equation (4.15), thereby
representing the minimum tangential force to the friction cone. Equation (4.20) calculates the
desired current tangential force margin f̄i,cur.

f̄i (fi,ni, µ) = fmaxi,t − fi,t (4.18)

= µfi · ni −
√
‖fi‖2 − (fi · ni)2 (4.19)

f̄i,cur = f̄i (fi,cur,ni, µ) (4.20)

Our quality metric δcur builds on the same idea as the work by Buss et al. [6]: a grasp with large
tangential force margins f̄i,cur provides a more secure grasp than one with small margins since
the contacts are less prone to sliding when an object wrench is applied. Equation (4.21) shows
a general formulation of our quality metric δ̃. It measures the grasp’s stability by computing an
average of the magnitudes of the tangential force margins f̄i,cur over all nc contact points weighted
by their respective contact force magnitudes ‖fi‖. The matrices F and N in equations (4.22) and
(4.23) contain the contact forces fi and contact normals ni as column vectors. A grasp with a
higher δ̃ is more desirable than one with a low δ̃.

We weigh the tangential force margins f̄i in equation (4.21) by their respective contact force
magnitudes ‖fi‖ because we care more about large contact forces that are not slipping than small
ones. Larger contact forces are more important for grasp stability than smaller ones because
they can give rise to larger maximum tangential forces (see equation (4.17)) and can thereby
compensate more disturbing object wrenches.

44 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

δ̃(F,N, µ) =

∑nc
i=1 ‖fi‖f̄i (fi,ni, µ)∑nc

i=1 ‖fi‖
with (4.21)

F =
(
f1 f2 . . . fnc

)
∈ R3×nc , and (4.22)

N =
(
n1 n2 . . . nnc

)
∈ R3×nc (4.23)

Equation (4.21) introduced a generic formulation of the quality metric δ̃. Finally, we can define
the quality metric δcur in equation (4.24), which quantifies how far the contact forces are currently
from the boundary of the friction cones. Therefore, we use the current contact forces fi,cur to
span the column space of the matrix Fcur in equation (4.25). Grasp stability optimization aims to
increase δcur.

δcur = δ̃(Fcur,N, µ) with (4.24)

Fcur =
(
f1,cur f2,cur . . . fnc,cur

)
∈ R3×nc (4.25)

Grasp Stability Based on Anticipated Contact Forces

We now established a measure of grasp quality based on current contact forces, called δcur.
However, in many grasping tasks, a clear task definition exists (e.g., "move an object from location
A to location B"). Let D = {w1,w2, . . . ,wq} be the set of task wrenches that the grasp must
resist during task execution where q is the total number of wrenches. For example, a task wrench
could be the object’s weight w1 = (0 0 −fg 0 0 0)T if the task definition involves lifting
the object. Note that w1 is not an object wrench (which would, in this case, be −w1) but rather
the effective object wrench that the grasp forces amount to in order to balance the external object
wrenches. Other task wrenches can include wrenches from inertial effects while relocating the
object or wrenches that arise from potential collisions with the robot’s environment. It is useful to
multiply the task wrenches by a scalar safety factor (e.g., for adding a 20% safety margin to w1 we
write 1.2 ·w1).

The Task Wrench Space (TWS) is a convex set of D (e.g., a ball [19] or an ellipsoid [47]) and
the GWS [19] is a convex set of all wrenches that the grasp can resist. Then, several related works
define a task-oriented quality metric by measuring the maximum scaling factor between the TWS
and the GWS such that the TWS is fully contained within the GWS [4, 72]. Unfortunately, since
these approaches are based on the GWS they face the same issue as described earlier. Because
they reason about the theoretically applicable contact forces, which are commonly bounded to unity
[19, 78], it is not possible to evaluate whether the current contact forces of a grasp are suitable to
balance an anticipated task wrench wt ∈ D. In this work, we define an alternative task-oriented
metric δtask through which we can calculate the upper bounds of the anticipated task forces during
task execution with techniques from grasp analysis.

Figure 4.6 gives a high-level introduction to our metric δtask. Similar to Figure 4.5, we show a

4.1. ANALYTIC GRASP STABILITY METRICS 45

grasp with two contact points p1 and p2. However, now we augment the current contact forces
f1,cur and f2,cur by considering the task wrench w1 from the above example (i.e., in this example
the task polytope is D = {w1}). We predict the additional contact forces f1,add and f2,add that
are required to compensate the task force −fg. By adding these additional forces to the current
contact forces f1,cur and f2,cur, we obtain the final task contact forces f1,task and f2,task that
each contact must resist. Analogously to δcur, we base our stability analysis on the tangential slip
margins. The magnitude of the tangential slip margins f̄i,task = f̄i (fi,task,ni, µ) that we expect
during task execution are calculated based on the task contact forces fi,task as depicted in Figure
4.6.

p2n1
f1,cur

n2
f2,cur

f̄1,cur

f̄2,curp1

p2
f1,cur

f2,cur

f̄1,task
f̄2,task

p1

f1,task

f2,task

fg

f1,add

f2,addpc

n2

t2

o2t1

o1 t2

o2
n1

Figure 4.6: Friction cones and anticipated task contact forces fi,task used to compute δtask (image
adapted from Koenig et al. [38]).

Let us discuss how we obtain the additional contact forces fi,add that compensate the task
wrench. Let wt ∈ D be an arbitrary task wrench that the grasp must resist (the object wrench
to be resisted would be −wt). We use the grasp matrix G (sometimes called the grasp map) to
predict how much reacting force each contact i should produce to compensate the task wrench wt.
We adhere to the definitions and notation by Prattichizzo et al. [73] to calculate the grasp matrix.

To determine G, Prattichizzo et al. [73] first define Pi in equation (4.26) which specifies the
translation from an arbitrary reference point on the object, usually the object’s center of mass pc,
to each contact point pi. The authors [73] use the cross product matrix S (r) in their calculations.

Pi =

(
I3×3 0

S (pi − pc) I3×3

)
with S(r) =

 0 −rz ry

rz 0 −rx
−ry rx 0

 (4.26)

Further, they define a rotation matrix Ri that expresses the orientation of each contact frame in
equation (4.27). Three unit vectors span the column space of the matrix Ri: the contact normal
ni and two orthogonal vectors ti and oi. See Figures 4.1 and 4.6 for visualizations of the contact
frame. Prattichizzo et al. [73] then obtain the blockdiagonal matrix Ri in equation (4.28).

46 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

Ri =
(
ni ti oi

)
∈ R3×3 (4.27)

Ri = Blockdiag (Ri,Ri) =

(
Ri 0

0 Ri

)
∈ R6×6 (4.28)

Prattichizzo et al. [73] introduce the selection matrix Hi that determines which components
of the contact wrench (fi,n fi,t fi,o mi,n mi,t mi,o)T contact i can transmit to the object.
The wrench intensity vector λi in equation (4.29) contains only those components that are actually
transmitted under the assumption of the friction model.

λi = Hi(fi,n fi,t fi,o mi,n mi,t mi,o)T (4.29)

Depending on the friction model in Table 4.1 we obtain different selection matrices. In the Point
Contact without Friction (PwoF) model the contact can only transmit the contact normal force
fi,n. All other forces or moments in the PwoF model are assumed to be negligible which is a
valid assumption for surfaces with a low friction coefficient µ and small contact patches [73]. The
Hard Finger (HF) model additionally transmits the tangential forces fi,t and fi,o that arise due to
Coulomb friction. The HF model also assumes small contact patches [73]. The Soft Finger (SF)
model additionally transmits a contact moment mi,n around the contact normal and is used if the
contact patch is sufficiently large to transmit friction moments [73].

Model Transmitted Quantities λi nλi
Hi

PwoF

fi,n

fi,t
fi,o
mi,n

fi,n

fi,t
fi,o

fi,n λi =
(
fi,n

)
1 Hi =

(
1 0 0 0 0 0

)

HF

fi,n

fi,t
fi,o
mi,n

fi,n

fi,t
fi,o

fi,n

λi =

 fi,n
fi,t
fi,o

 3 Hi =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



SF fi,n

fi,t
fi,o
mi,n

fi,n

fi,t
fi,o

fi,n

λi =


fi,n
fi,t
fi,o
mi,n

 4 Hi =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



Table 4.1: Contact models and respective selection matrices (partly adapted from [73]).

Prattichizzo et al. [73] go on to define the the partial grasp matrix Gi of each contact point i in
equation (4.30) as the matrix product of Pi, Ri and HT

i . Finally, the grasp matrix G in equation

4.1. ANALYTIC GRASP STABILITY METRICS 47

(4.31) is the assembly of the partial grasp matrices Gi of all contacts.

Gi = PiRiH
T
i ∈ R6×nλi (4.30)

G =
(

G1 G2 . . . Gnc

)
∈ R6×nc·nλi (4.31)

Prattichizzo et al. [73] stack the contact wrench intensities λi at each contact i in the vector
λ = (λT1 λT2 . . . λTnc)T . Remember that wt ∈ D is the task wrench we would like the grasp
to resist. The grasp matrix G relates the contact wrench intensities λ to the resulting object wrench
Gλ resulting from the contact interactions. In our case, the object wrench is the task wrench wt

and we obtain equation (4.32).

Gλ = wt (4.32)

Finally, the only unknown in equation (4.32) are the suitable contact wrench intensities λ that
balance the task wrench wt. Prattichizzo et al. [73] show that using pseudoinverse of the grasp
matrix G+ we can calculate λ in equation (4.33). Note that there is not necessarily a unique λ that
solves the equation Gλ = wt. This ambiguity is because there exist internal contact wrenches
λ ∈ N(G), where N(G) is the null space of the grasp matrix, that only affect the tightness of the
grasp but do not translate to an additional object wrench because the individual contact wrench
intensities λi cancel out [73]. In simple terms: pressing harder will not lead to an external wrench
to the object that could accelerate it if the contact wrenches cancel out. Prattichizzo et al. [73] add
the term N(G)γ to the right side of the equation and thereby identify all wrench intensities λ that
lead to a 0 object wrench. The parameter γ is an arbitrary vector parametrizing the solution [73].

λ = G+wt + N(G)γ (4.33)

For our quality metric δtask, we use the HF contact model since we are only interested in the
additional contact forces (and not the moments). We can therefore replace λ with the desired
additional contact forces fi,add in equation (4.34). By assuming that the internal grasp forces
stay constant after applying the additional contact forces fi,add we can omit the term N(G)γ in
equation (4.34). Furthermore, we assume that the configuration of the grasp (e.g., number of
contacts and contact normals) do not change after applying fi,add.

(fT1,add fT2,add . . . fTnc,add)T = G+wt (4.34)

Now that we know the additional contact forces fi,add the grasp must react with to balance wt,
we can calculate the anticipated task contact forces fi,task from Figure 4.6. It is important to note
that λ expresses the wrench intensities in the contact frames {ni, ti,oi}. Therefore the current
contact forces fi,cur also have to be represented in this reference frame before adding them in

48 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

equation (4.35).

fi,task = fi,cur + fi,add (4.35)

Last but not least, we can calculate our task-oriented grasp quality metric δtask in equation
(4.36). We simply insert the contact forces fi,task that we expect during task execution into the
generic formulation of δ̃ from equation (4.21) to measure the size of the tangential force margins
f̄i,task. Therefore, the metric δtask measures the average distance of the expected task contact
forces fi,task from the friction cones. In equation (4.36), we calculate a lower bound over all task
wrenches w ∈ D, because we want to identify the worst-case task wrench for which the grasp will
most likely fail. Larger values of δtask are desirable.

δtask = min
w∈D

δ̃(Ftask,N, µ) with (4.36)

Ftask =
(
f1,task f2,task . . . fnc,task

)
∈ R3×nc (4.37)

4.1.4 Summary

Table 4.2 summarizes the required information to calculate each of the presented quality metrics.

Information εw εf ετ δcur δtask
Friction coefficient µ yes yes yes yes yes
Contact normals ni yes yes yes yes yes
Contact positions pi yes no yes no yes
Object center of mass pc yes no yes no no
Current contact forces fi,cur no no no yes yes
Task definition D no no no no yes

Table 4.2: Grasp quality metrics and the information required to compute them.

4.2 Experimental Setup

4.2.1 Algorithm Overview

The Big Picture

Before we discuss the details of the RL algorithm, let us refocus our attention on the vision of this
research effort. The grasp quality metrics presented in section 4.1 require various data about
the grasp to be known accurately. Table 4.2 summarizes the required data for each metric. Real
grasping systems can not always measure this data precisely, but simulators can output it at high
resolutions. Therefore, the quality metrics can easily be calculated in the simulated environment,
where all the required data is readily available. The metrics can be used as reward signals
rt for RL algorithms during training. At test time, RL algorithms do not require access to the

4.2. EXPERIMENTAL SETUP 49

reward and use solely the state information st which does not necessarily include accurate contact
information. Therefore, the high-level vision of this project is to train RL algorithms in simulation
and consequently deploy them in the real world.

Figure 4.7 shows how the information flow of the system implements this idea. In section 2.2.4
we presented the ReFlex Stack, a simulation framework for the ReFlex TakkTile robotic hand. We
mentioned that one of its primary functional requirements was the seamless interaction between
the simulator and the real robotic hand. We achieved this by providing the same message interface
in simulation that also the real robot hand uses to report its state st information. Similarly, we
also want our trained policies to easily communicate with both the simulated and the real robotic
hand. As shown in Figure 4.7, our policy πφ receives the state vector st as its input. We pipe the
policy’s actions at through the Command Module of the ReFlex Interface and thereby convert
the actions into position control commands that both the simulator and the real ReFlex hand can
directly execute. Figure 4.7 also demonstrates that the ReFlex Interface calculates the quality
metrics using the highly accurate contact information from the simulation and provides it to the RL
algorithm as the reward signal rt.

While Training Always

RL Algorithm

1000 Hz

ReFlex Interface

Sim Contact Info

40 Hz

40 Hz

State

Quality Metrics

Neural Net

Command Module

Reward

Actions

C ++ Python

Position Ctrl.

3 Hz

Simulated ReFlex

Real ReFlex

C ++

C
st

at

rt

πθ

Figure 4.7: Information flow in the grasping pipeline. The grey arrows indicate data that only flows
while training the algorithm. Blue arrows indicate information that flows during training
and testing. We also show update frequencies and programming languages (ReFlex

image source [77]).

50 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

Grasp Refinement Experiment

In this section we design an experiment to answer RQ 1 from section 1.3. Namely, we analyze the
potential of analytic grasp stability metrics as reward functions for RL algorithms that perform tactile
grasp refinement on three-fingered hands. Figure 4.8 shows an overview of our experimental
setup. It is split into an (A) initialization stage and a (B) grasp refinement episode.

Stage Refine Lift Hold End
Steps 15 6 6 -

Duration 5 s 2 s 2 s -

and 0

0

0

0 0 0

ϵf + α1ϵτ + α2δtask

{0,1}

ϵf + α1ϵτ + α2δcur ϵf + α1ϵτ + α2δcur

ϵf + α1ϵτ ϵf + α1ϵτ ϵf + α1ϵτ

δtask δcur δcur

B - Grasp Refinement Episode

Select object
and calculate
ground truth
wrist pose

O

Add
translational
and rotational

wrist error E

Close fingers
until contact

ϵ δ
δ
ϵ
β

A - Initialize World

Figure 4.8: Overview of the RL algorithm. In (A), we generate a new object wrist error combination
(O,E). Afterward, we start the (B) grasp refinement episode using different reward

functions (image adapted from Koenig et al. [38]).

(A) In the initialization stage, we create a new grasp configuration that the algorithm should refine.
We generate a random object O that the algorithm should grasp and find its corresponding
ground-truth wrist pose. Initial grasping configurations are often defined using contact points,
but it is sometimes difficult to determine whether they are reachable [18]. Therefore, we
represent the ground truth grasping configuration as a gripper pose in the vicinity of the
object. Specifically, this wrist pose is defined such that the offset between the tool center
point (TCP) and the object’s center of mass pc is 5 cm. The ground-truth pose of the hand
is facing sideways towards the object, similar as in Figure 4.8. In a second step of the
initialization stage, we add a wrist error E to the pose of the TCP to simulate the calibration
errors mentioned in section 1.2. Consequently, the hand closes its fingers in this initial grasp
configuration until they make contact.

(B) Episode Structure: In the grasp refinement episode, the RL algorithm improves the initial
grasp through iterative adjustments to the TCP pose and the finger positions. We split the
process into four stages. In the (1) refine stage, the policy improves the grasp in 15 algorithm
steps. Consequently, in the (2) lift stage a hard-coded lifting procedure is triggered. In the (3)
hold stage, we test the stability of the grasp. The algorithm can continue to update the grasp
in response to the changing grasping situation through six algorithm steps in the lift and

4.2. EXPERIMENTAL SETUP 51

hold stage, respectively. The control frequency of the policy is 3 Hz in all three stages. The
update frequency of the low-level PD controllers in the wrist and the fingers is 100 Hz. Finally,
in the end stage, we record whether the hand successfully lifted the object and whether it
stayed in the hand until the end of the holding stage.

Rewards: To answer RQ 1, we compare four reward frameworks: (1) ε and δ, (2) only δ,
(3) only ε and (4) the binary reward framework β. The table in Figure 4.8 shows which
grasp stability metrics from section 4.1 are provided in which reward framework and stage.
For example, we use δtask only in the refine stage and δcur otherwise because we need
to predict the stability of the anticipated task forces only before lifting. After lifting, we can
directly measure the actual contact forces that occur during task execution, and hence δcur
is the suitable measure. The task only involves lifting the object. Hence our task definition
D = {(0 0 −fg 0 0 0)T } for δtask only includes resisting the object’s weight −fg.
Furthermore, we prefer εf and ετ over εw in our reward functions. We only use εf and
ετ because, in combination, they provide two stability estimations about a grasp while εw
solely returns the magnitude of a single wrench. We linearly combine the metrics using two
factors α1 = 5 and α2 = 0.5 and empirically determine their magnitude. The frameworks
based on grasp stability metrics receive dense reward feedback in every algorithm time step.
The binary metric β 7→ {0, 1} only provides a sparse reward about whether the task was
successfully executed {1} or not {0} at the end of the episode. The SAC [23] algorithm is
sensitive to reward scaling [23], and therefore we normalize the rewards.

Stopping Criteria: An episode can last a maximum of 15 + 6 + 6 = 27 algorithm steps.
To discourage excessive movement of the object during the refinement stage, we end the
episode early if the hand shifts the object by more than 10 cm. Furthermore, we terminate
grasp refinement if one of the proximal finger joints exceeds a limit of 3 radians. If the object
dropped after the lifting stage we do not enter the holding stage.

We configure the ReFlex Simulator of our open-source ReFlex Stack framework. We approxi-
mate the hand’s geometry with cuboids to reduce computational load. Furthermore, the simulated
gravity in our experiments is activated (unlike in related works [56]). The object can freely interact
with the simulated world.

4.2.2 Training Dataset

A training sample consists of the tuple (O,E), where O is the object, and E is a wrist pose error.
O and E are sampled uniformly before every episode. Table 4.3 shows the object properties from
which we sample. We consider three object types (cuboids, cylinders, spheres) of varying mass
and size. Figure 4.9 shows the maximum and minimum object sizes. The wrist error E consists of
a translational (ex, ey, ez) and a rotational error (eξ, eη, eζ), and we sample them from [−5, 5] cm
and [−10, 10] deg for each variable, respectively.

52 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

Property Sampling Ranges
Geometry {Cuboid,Cylinder,Sphere}
Mass ∈ [0.1, 0.4] kg

Size
Cuboid: height ∈ [13, 23] cm, length ∈ [4, 10] cm, width ∈ [4, 10] cm
Cylinder: height ∈ [13, 23] cm, radius ∈ [3, 5] cm
Sphere: radius ∈ [6.5, 8] cm

Table 4.3: Object properties and sampling ranges.

Figure 4.9: Minimum and maximum object sizes. Spheres are placed on a concave mount to
prevent rolling (image source Koenig et al. [38]).

4.2.3 Test Dataset

For the test dataset, we define 8 different wrist error cases. The L2 norm of the variables (a, b, c)

is d(a, b, c) =
√
a2 + b2 + c2. Table 4.4 shows the wrist error cases in our test dataset. Case

A means no error and case H corresponds to the maximum wrist error. Figure 4.10 visualizes
two wrist error cases. The test dataset consists of 10 cuboids, 10 cylinders, and 10 spheres (i.e.,
30 random objects O in total). For every object O, we generate eight random wrist error cases
{A,B, . . . ,H} from Table 4.4. To test one model, we therefore run 30× 8 = 240 experiments on
randomly generated and unseen wrist error, object combinations (O,E). The test dataset is the
same for all models to allow for a fair comparison.

Wrist Error Case A B C D E F G H
d(ex, ey, ez) in cm 0 1 2 3 4 5 6 7
d(eξ, eη, eζ) in deg 0 2 4 6 8 10 12 14

Table 4.4: Wrist error cases (source Koenig et al. [38]).

4.2.4 State and Action Space

The state vector st consists of seven joint positions (1 finger separation DOF, three proximal
bending DOF, three distal bending DOF), and contact data on each of the seven links (three
proximal links, three distal links, and a palm) that includes contact position, contact normal and

4.2. EXPERIMENTAL SETUP 53

Figure 4.10: Left: wrist error case A (i.e., the ground-truth grasping pose). Right: wrist error case
H (i.e., maximum wrist error) (image source Koenig et al. [38]).

contact force, that have three (x, y, z) components each. Therefore, the dimension of the state
vector is st ∈ R7+7×(3×3)=70. Our approach does not assume any information on the object (e.g.,
object pose, geometry, or mass) in the state vector, unlike related works [29, 56]. The contact
normals and positions are provided in the wrist frame, while the contact forces are represented in
the contact frame.

In this experiment, we assume perfect contact information (positions, normals, and the full
3D force vectors) that are not obtainable from the real hand. Forward kinematics can make
rough approximations about contact positions and normals on the real ReFlex. The tactile sensor
readings yield an estimate of the normal forces. However, it is impossible to measure the tangential
forces with the barometric pressure sensors on the real robotic hand. In the following chapter 5,
which analyzes RQ 2, we relax these strong assumptions on perfect contact sensing.

The action vector at consists of 3 finger position increments (af1 , af2 , af3) ∈ [−8, 8] deg for
the bending DOF, 3 TCP position increments (ax, ay, az) ∈ [−0.5, 0.5] cm and 3 TCP rotation
increments (aξ, aη, aζ) ∈ [−0.5, 0.5] deg. The action vector’s dimension is at ∈ R3+3+3=9. The
increments are added to the currently measured finger positions and wrist pose.

4.2.5 Hyper-parameters

We parametrize the policy πφ by a neural network with weights φ. The network is a multi-layer
perceptron (MLP) with four layers and the following number of neurons in each layer (70, 256, 256,
9). The input layer matches the dimension of the state vector st while the output layer matches the
dimension of the action vector at. We use an implementation of the SAC [23] algorithm by the
stable-baselines3 [75] package. The SAC [23] algorithm algorithm trains a stochastic policy
πφ, which we evaluate deterministically when testing. Table 4.5 shows the hyper-parameters for
the SAC [23] algorithm which yielded the best performance in our experiments.

54 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

Parameter Value
ent_coef 0.01
learning_starts 100
batch_size 64
gradient_steps 32
train_freq 32
learning_rate 10−4

tau 10−4

Table 4.5: Hyper-parameters for SAC [23] algorithm.

4.3 Results

4.3.1 Training

Figure 4.11 shows the training results of our experiment. The total number of training steps is
25000, corresponding to roughly 1000 training episodes depending on the episode lengths. For
each reward framework from Figure 4.8, we train 40 models, each with a different random seed to
avoid overfitting. The error bars in all plots in this work show ±2 standard errors. Furthermore,
we smooth the training results with a moving average filter of kernel size 30. In all plots, Hold
Success refers to the success rate of the algorithm holding the object in hand at the end of the
grasp refinement episode. Lift Success refers to whether the object is still in the hand after the
lifting stage. In the following, we describe the results from Figure 4.11.

Training Results Figure 4.11

(4.11-a) Major Result: Plot (1) shows that the policies trained with grasp stability metrics
reach higher success rates than the binary reward framework β.

(4.11-b) Major Result: Plot (1) also reveals that the frameworks ε and δ, and δ, and ε are
more sample efficient than β because their learning speed is greater (i.e., β has a
smaller gain in performance per episode). The δ framework is less sample efficient
than the frameworks that include the εf and ετ metrics.

(4.11-c) Plot (1) and Plot (2) are almost identical. Hence, once the algorithm successfully
grasps and lifts the object, it rarely drops it in the holding stage.

(4.11-d) Plot (3) shows that the ε framework has the most stable learning procedure since we
can observe a constant upwards trend of the episode reward. The δ framework has
a reward plot that dips at approximately 350 episodes. Combining δ with ε improves
the smoothness of the reward plot. Note that the rewards have a different scaling
and therefore have different magnitudes.

(4.11-e) Plot (6) demonstrates that the reward framework ε and δ is particularly helpful for

4.3. RESULTS 55

0 250 500 750
Episodes

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (1) - All Objects

0 250 500 750
Episodes

0.0

0.5

1.0

Li
ft

S
uc

ce
ss

Plot (2) - All Objects

0 250 500 750
Episodes

0

10

E
pi

so
de

 R
ew

ar
d Plot (3) - All Objects

0 100 200
Cuboid-Episodes

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (4) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (5) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (6) - Spheres

0 250 500 750
Episodes

0.0

0.5

1.0

f

Plot (7) - All Objects

0 250 500 750
Episodes

0.0

0.5

1.0
Plot (8) - All Objects

0 250 500 750
Episodes

1

2

3

N
um

. C
on

ta
ct

s Plot (9) - All Objects

0 250 500 750
Episodes

0.0

0.5

1.0

cu
r

Plot (10) - All Objects

0 250 500 750
Episodes

0.0

0.5

1.0

ta
sk

Plot (11) - All Objects

0 250 500 750
Episodes

25

50

75
S

um
 F

or
ce

s
in

 N Plot (12) - All Objects

0 100 200
Cuboid-Episodes

0.0

0.5

1.0

f

Plot (13) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0

f

Plot (14) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0

f

Plot (15) - Spheres

0 100 200
Cuboid-Episodes

0.0

0.5

1.0
Plot (16) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0
Plot (17) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0
Plot (18) - Spheres

0 100 200
Cuboid-Episodes

0.0

0.5

1.0

cu
r

Plot (19) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0

cu
r

Plot (20) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0

cu
r

Plot (21) - Spheres

0 100 200
Cuboid-Episodes

0.0

0.5

1.0

ta
sk

Plot (22) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0

ta
sk

Plot (23) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0

ta
sk

Plot (24) - Spheres

 and

Figure 4.11: Train results for reward frameworks defined in Figure 4.8 (includes data from [38]).

56 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

spheres as it outperforms all other frameworks.

(4.11-f) Plot (6) also shows that the β framework especially struggles with spheres as
success rates are close to 0.

(4.11-g) Plots (7) and (8) show that all reward frameworks improve εf and ετ over time.
However, the frameworks ε and δ and ε which explicitly optimize εf and ετ reach
higher values for these metrics.

(4.11-h) Plot (9) visualizes that the number of contacts are highest for the ε and δ and ε
frameworks which include the geometric quality metrics εf and ετ . The number of
contacts for δ is lower, and hence it provides feedback about finger positioning, which
differs from rewards that include εf and ετ . The δ reward assigns less importance to
a large number of contacts. However, interestingly δ reaches similar success rates
in Plot (1) as the other grasp quality-based rewards even with a smaller average
number of contacts.

(4.11-i) Plots (10) and (11) shows that all grasp quality based rewards (ε and δ, δ, and ε)
reach similar values for δcur and δtask, even ε which does not explicitly optimize it.
Similar to the rewards in Plot (3) we observe a slight but systematic decrease in δcur
and δtask at approximately 350 episodes.

(4.11-j) Plot (12) graphs the sum of the contact force magnitudes. The framework δ, which
mainly produces feedback about the force distribution, leads to smaller contact force
magnitudes in the early stages of training. The β framework does not learn to apply
sufficient amounts of contact force and hence is the worst performing in Plot (1).

(4.11-k) In Plots (13) to (18), we observe a similar trend as in Plots (7) and (8). The
frameworks ε and δ and ε reach the highest values for εf and ετ . This trend is the
same across each object type.

(4.11-l) Plots (19) to (24) show that the trend from result (4.11-i) also holds for each object.

(4.11-m) The δcur Plots (19) to (21) are almost identical to the δtask Plots (22) to (24).

4.3.2 Testing

As described in section 4.2.3, we perform 240 experiments to test one model. We have 40 models
with different seeds and four reward frameworks, which gives a total of 240 × 40 × 4 = 38400

testing experiments. Figure 4.12 shows the test results from this large number of grasps. We also
evaluate results from the supplementary video material1 which demonstrate the learned strategies
of the best performing models.

1Video material available under https://www.youtube.com/watch?v=9Bg8ZEAEOGI

https://www.youtube.com/watch?v=9Bg8ZEAEOGI

4.3. RESULTS 57

 and
Reward Function

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

0.836 0.808 0.804

0.407

Plot (1) - All Obj. and W. Errors

Cuboid Cylinder Sphere
Object

0.0

0.5

1.0

0.
95

4

0.
93

1

0.
62

3

0.
96

7

0.
93

4

0.
52

2

0.
94

0

0.
90

3

0.
57

1

0.
57

1

0.
56

4

0.
08

5

Plot (2) - All Wrist Errors

A B C D E F G H
Wrist Error Case

0.0

0.5

1.0
Plot (3) - All Objects

A B C D E F G H
Wrist Error Case

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (4) - Cuboids

A B C D E F G H
Wrist Error Case

0.0

0.5

1.0
Plot (5) - Cylinders

A B C D E F G H
Wrist Error Case

0.0

0.5

1.0
Plot (6) - Spheres

0.1 0.2 0.3 0.4
Object Mass

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (7) - Cuboids

0.1 0.2 0.3 0.4
Object Mass

0.0

0.5

1.0
Plot (8) - Cylinders

0.1 0.2 0.3 0.4
Object Mass

0.0

0.5

1.0
Plot (9) - Spheres

 and

Figure 4.12: Test results for reward frameworks defined in Figure 4.8 (includes data from [38]).

Test Results Figure 4.12

(4.12-a) Major Result: Plot (1) demonstrates that a reward that combines geometric grasp
stability metrics ε with the force-agnostic metrics δ outperforms all other rewards at
an average success rate of 83.6% over L2 wrist errors between 0 and 7 cm and 0 and
14 deg. The best performing reward ε and δ outperforms the binary reward baseline
β by a large margin of 42.9%. Table 4.6 shows results of a one-sided, paired t-test to
support this result.

(4.12-b) Major Result: Plot (2) analyzes algorithm performance per object type. The per-
object performance of the best reward framework ε and δ in Plot (2) is 95.4% for
cuboids, 93.1% for cylinders, and 62.3% for spheres across all wrist errors from Table
4.4.

(4.12-c) In Plot (2), we also see that, on average, spheres are harder to grasp as success
rates are about half of the cuboid and cylinder success rates. Framework β almost
always fails to grasp spheres.

(4.12-d) Plot (2) shows that the metrics εf and ετ are especially valuable for spheres as
performance of the ε and δ reward and the ε framework are comparatively large at

58 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

62.3% and 57.1%.

(4.12-e) Plot (3) quantifies how the magnitude of the L2 wrist error relates to successfully
lifting and holding the object. The relation appears to be non-linear (i.e., incremental
wrist errors close to error case H affect grasp performance proportionally more than
around case B).

(4.12-f) Plots (4) to (6) visualize the success rates per object type across different wrist error
cases from Table 4.4. All algorithms are comparatively robust across wrist errors for
cuboids and cylinders in Plots (4) and (5), as success rates only slightly decrease for
more significant errors. However, for spheres in Plot (6), all algorithms tend to be
more sensitive to the size of the wrist error as we observe a more considerable drop
in performance for greater errors.

(4.12-g) Plots (7) to (9) show the relation between grasp success and object mass. The
algorithms seem to be largely invariant to changes in object mass for cuboids and
cylinders in Plots (7) and (8). However, for the β framework, we observe a slight
inverse relation between object mass and grasp success for cuboids and cylinders.
For spheres in Plot (9), we detect a more apparent result than for cuboids or cylinders:
the grasp quality-based reward frameworks struggle more with heavier spheres.

(4.12-h) Major Result: From the supplementary video material, we see that the ε and δ

framework generates the most sensible-looking grasps. The δ framework completely
fails to use one finger of the robotic hand on the evaluated objects. The strategies
learned by the ε framework look similar to the behavior of ε and δ. The β framework
faces a similar issue as δ since it only actuates two of the three fingers. By visual
evaluation, it is clear that β does not put an adequate amount of pressure on the
object, which we previously noted in result (4.11-j).

Result µε and δ > µδ µε and δ > µε µε and δ > µβ
p-value 3.1681 10−10 2.0510 10−12 ≈ 0.0

Table 4.6: Results of t-test for reward comparison. The mean of framework x is µx and ‘≈ 0.0’
means value was below machine precision (includes data from [38]).

4.4. DISCUSSION 59

4.4 Discussion

Answering RQ 1

Let us revisit RQ 1 which this study investigates.

RQ 1: Which analytic grasp stability metrics are the most expressive reward
functions for RL algorithms that refine grasps on three-fingered robotic hands
receiving only tactile and joint position data as input?

From result (4.12-a) we conclude that a reward function that combines the geometric grasp
quality metric ε with the force-agnostic measure δ is most expressive as it outperforms all other
studied reward functions. The t-test in Table 4.6 shows that this claim is statistically significant
since p < 0.01 for all comparisons. This means that ε and δ encode different information about
grasp stability. They complement each other well as algorithms that trained with feedback from
both ε and δ resulted in stronger overall policies.

Lower Success Rates for Spheres

The low success rates for spheres in results (4.12-b) and (4.12-c) could be due to the rolling motion
that spheres are prone to. Cuboids and cylinders move comparatively less when touched by the
robotic fingers or palm. As shown in Figure 4.9, we place spheres on concave mounts to reduce
rolling. To understand whether the rolling motion reduces grasp success, we could check if a larger
incline on the mount can improve performance for spheres.

Another hypothesis for the lower success rates for spheres is that spheres require different
grasping strategies than cuboids or cylinders, and it is hard to unify them under one policy πφ.
It would be interesting to modify the action vector at and add actuation to the fourth DOF and
thereby allow finger separation. With this modification, spherical grasps would be possible, and it
would be worth investigating whether the algorithms learn to use the fourth DOF for spheres.

The fact that spheres are harder to grasp also relates to the result (4.12-f), which states that
algorithms that grasp spheres are more sensitive to wrist errors. Moreover, we see from Plot (2)
in Figure 4.12 that the reward frameworks that are based on grasp quality metrics have similar
success rates for cuboids and cylinders. However, for spheres the results differ by larger margins
as noted in result (4.12-d). This means that the performance on spheres is the deciding factor that
leads to our final conclusion in Plot (1) of Figure 4.12 that ε and δ outperforms all other metrics.

Lower Success Rates for Binary Reward β

In result (4.11-a), we showed that the reward in the β framework is less informative than the
rewards that are based on quality metrics. This result is not surprising since it is well understood
that shaped rewards are more sample efficient than sparse rewards [64]. The β framework may
not represent the best alternative reward not based on analytic grasp quality metrics. Rather, it is a
baseline that is often included in rewards of related works such as [56, 99]. We hypothesize that the

60 CHAPTER 4. REWARD DESIGN AND GRASP REFINEMENT

low contact forces the β framework applies to the object in results (4.11-j) and (4.12-h) contribute
to low success rates. From Plot (1) in Figure 4.11, it is not entirely clear if the β framework already
converged. Possibly training longer can increase its success rates further.

Video Demonstrations

Result (4.12-h) revealed that policies trained with the δ framework fail to actuate all three fingers of
the hand. However, the frameworks that include ε do not face this issue. The latter frameworks
include the quality metrics εf and ετ . We hypothesize that the frameworks trained with these quality
metrics (i.e., the frameworks ε and δ and ε) learn to use all three fingers because ετ incentivizes
contacts on all three fingers. As shown in Figures 4.4c and 4.4d, the value of ετ is considerably
larger when there are contacts on each finger, because more disturbing torque on the object can
be resisted. However, since only vertical acceleration and no external torque is applied in our
experiments, grasping the object with two fingers, like in framework δ, can yield similar success
rates as a grasp that contacts the object on more fingers. These results are supported by the
similar success rates of δ (two-finger grasp) and ε (three-finger grasp) in Plot (1) of 4.12.

The fact that δ showed only two-finger grasps in our video demonstrations is also a possible
explanation for the result (4.11-h), which showed that δ consistently has fewer contact points than
the ε-based frameworks that typically perform three-finger grasps. Furthermore, it also explains
the comparatively low sphere success rate for δ in result (4.12-d), as grasping a sphere with two
fingers will only work robustly if grasped below the sphere’s equator. Cuboids and cylinders can
be more easily gripped with two fingers, as the success rates in Plot (2) of Figure 4.12 indicate.
Lastly, we have to mention that we could not possibly visually inspect all trained δ models and
check whether the two-finger grasp strategy is consistent across all models and objects. However,
the lower number of contact points in Plot (9) in Figure 4.11 could indicate that this observation is
indeed accurate across the majority of algorithms trained with δ.

Object Mass and Grasp Success

In result (4.12-g), we found a negative correlation between object mass and grasp success. This
relation was less prominent for cuboids and spheres. We expect this observation, and it is easily
explainable with the larger gravitational forces that act on heavier objects. Heavier objects induce
larger tangential forces at each contact and are therefore more likely to slip. Surprisingly, the grasp
success of algorithms trained with physically inspired reward functions is largely invariant towards
changes in the mass of cuboids and cylinders. It would be interesting to increase object masses
further and see at which point the success rates drop. Note that the mass range in Plot (9) of
Figure 4.12 is smaller than in Plots (7) and (8), which is a purely random effect because we sample
the mass uniformly from the interval [0.1, 0.4] kg.

4.4. DISCUSSION 61

Using Force-Agnostic Rewards

Result (4.11-d) highlighted a slight decrease in reward for the δ framework after approximately 350
episodes. Possibly this could be a limitation of the SAC [23] algorithm and the interplay with the
simulated environment. While building the robot simulator with the DART physics engine, we found
that the larger the simulated contact forces of a grasp get, the more unstable they become. Hence,
a possible reason for result (4.11-d) could be that as contact forces in Plot (12) of Figure 4.11
rise throughout the learning procedure the contact forces get more unstable which is bound to
negatively impact the calculation of the quality metrics in δ because they rely on accurate current
force measurements fi,cur. This issue needs to be addressed in future work. However, we can
say that combining ε and δ improves the overall learning stability and can compensate for the drop
in reward as shown in Plot (3) of Figure 4.11.

Result (4.11-m) revealed that the plots of δcur and δtask are almost identical. This result suggests
that we could have also only used δcur and not δtask in our reward functions. It makes sense that a
grasp with a high δcur and contact forces that are well away from the friction limits also has a large
δtask because it can compensate more task wrench. But it is counterintuitive that the values are so
similar. When calculating δtask, we assume that the contact forces are within realistic magnitudes
and directions. However, physics engines often struggle to produce physically meaningful results
when simulating robotic grasping [91]. In fact, if the contact forces fi,cur are much larger than
the additional contact forces fi,add that appear due to the task wrench wt ∈ D , then the metric
δtask → δcur. Perhaps adapting the magnitude of the task wrench wt to the simulated contact
forces could make δtask a more informative metric.

Computational Load

The scale of the data collection in this experiment alone is immense. Depending on the episode
lengths, we conduct approximately 1000 grasping episodes to train each model. Further, we
have four frameworks for which we run experiments over 40 random seeds each. Hence, we
train 4 × 40 = 160 models in this experiment which conduct an approximate total number of
1000×160 = 160000 grasps during training. Additionally, we perform 38400 experiments to test the
models, as explained in section 4.3.2. Overall, we conducted a total of 160000 + 38400 ≈ 200000

grasps in the training and testing stage combined. If we ran such a large number of experiments
on a single real robot, it would take roughly 140 days (assuming one grasp and resetting procedure
lasts one minute, and the experiments can run day and night). However, training and testing a
single policy in simulation on a four central processing unit (CPU) machine takes approximately 24
hours, and simulations can run in parallel. Therefore, using a research cluster, we could obtain our
results in a matter of a few days, demonstrating the power of training agents in simulations. Note
that the Gazebo simulator is the most computationally intensive part of the system and not the RL
algorithm.

5 Contact Sensing and Grasp Refinement

This chapter investigates the effect of contact sensor resolution on grasp refinement success. We
will describe how we change the experimental setup from chapter 4 to examine this question.
Further, we present empirical results and consequently answer RQ 2. This chapter is also a
revision of the paper by Koenig et al. [38] which is currently under review and therefore includes
some results presented in the publication. Several results of this experiment are similar to the
ones shown in chapter 4 and will not be stated or discussed again.

5.1 Experimental Setup

To investigate RQ 2, we train our models with a varying state vector st. Except for the changing
state vector, the experimental setup is the same as described in section 4.2. As shown in 5.1, we
compare four contact sensing frameworks.

Framework full normal binary none
Joint Positions yes yes yes yes
Contact Normals yes yes yes no
Contact Positions yes yes yes no
Contact Forces full vector only normal binary signal no
Number of Inputs 70 56 56 7

Table 5.1: Inputs for different contact sensing frameworks.

1. The full framework receives the 3D contact force vector and therefore has the same state
vector as the algorithms described in section 4.2.4.

2. The normal framework omits the tangential forces fi,t and only provides the magnitude of
the normal force ‖fi,n‖ on each finger segment. See Figure 4.1 for a visualization of fi,n
and fi,t.

3. The binary framework receives binary feedback on whether a link is in contact {1} or not
{0}.

4. The none framework is only provided with the seven joint positions (one finger separation
angle, three proximal joint angles and three distal joint angles). It receives no contact
information and purely relies on proprioceptive joint position data.

63

64 CHAPTER 5. CONTACT SENSING AND GRASP REFINEMENT

We change the size of the input layer of the neural network that parametrizes our policy πφ to
match the dimension of each framework’s state vector. The rest of the network remains unchanged
to allow for a fair comparison. We use our best performing reward ε and δ from section 4.2.
Therefore, all of the above contact frameworks indirectly receive contact feedback via the reward.
The full contact sensing framework is the same as the ε and δ reward framework from section 4.2.

5.2 Results

5.2.1 Training

Like in section 4.3, all following plots show results over 40 random seeds per framework, we
indicate ±2 standard errors with the error bars, and we smooth the training plots in Figure 5.1 with
a moving average filter of kernel size 30.

Train Results Figure 5.1

(5.1-a) Major Result: The performance of the full, normal, and binary frameworks look
almost identical across all training plots of Figure 5.1.

(5.1-b) Major Result: In Plots (1) and (2), the none framework initially learns faster than
the other frameworks. However, after approximately 300 episodes it plateaus at a
slightly lower success rate than the contact-based frameworks (i.e., the full, normal,
and binary frameworks).

(5.1-c) For spheres in Plot (6), the none framework learns especially fast in the beginning but
is also eventually superseded by the other frameworks.

(5.1-d) The none framework initially learns to optimize the quality metrics in Plots (7) to (8),
(10) to (11) and (13) to (24) better and has a larger average number of contacts in
Plot (9) than the other frameworks before the the 300th episode. Towards the end of
the training process the none framework converges to similar final values as the other
frameworks for the mentioned plots.

(5.1-e) Major Result: The none framework consistently applies larger contact forces than
the other frameworks in Plot (12).

5.2. RESULTS 65

0 250 500 750
Episodes

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (1) - All Objects

0 250 500 750
Episodes

0.0

0.5

1.0

Li
ft

S
uc

ce
ss

Plot (2) - All Objects

0 250 500 750
Episodes

5

10

E
pi

so
de

 R
ew

ar
d Plot (3) - All Objects

0 100 200
Cuboid-Episodes

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (4) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (5) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0

H
ol

d
S

uc
ce

ss

Plot (6) - Spheres

0 250 500 750
Episodes

0.0

0.5

1.0

f

Plot (7) - All Objects

0 250 500 750
Episodes

0.0

0.5

1.0
Plot (8) - All Objects

0 250 500 750
Episodes

2

4

N
um

. C
on

ta
ct

s Plot (9) - All Objects

0 250 500 750
Episodes

0.0

0.5

1.0

cu
r

Plot (10) - All Objects

0 250 500 750
Episodes

0.0

0.5

1.0

ta
sk

Plot (11) - All Objects

0 250 500 750
Episodes

25

50

75
S

um
 F

or
ce

s
in

 N Plot (12) - All Objects

0 100 200
Cuboid-Episodes

0.0

0.5

1.0

f

Plot (13) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0

f

Plot (14) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0

f

Plot (15) - Spheres

0 100 200
Cuboid-Episodes

0.0

0.5

1.0
Plot (16) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0
Plot (17) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0
Plot (18) - Spheres

0 100 200
Cuboid-Episodes

0.0

0.5

1.0

cu
r

Plot (19) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0

cu
r

Plot (20) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0

cu
r

Plot (21) - Spheres

0 100 200
Cuboid-Episodes

0.0

0.5

1.0

ta
sk

Plot (22) - Cuboids

0 100 200
Cylinder-Episodes

0.0

0.5

1.0

ta
sk

Plot (23) - Cylinders

0 100 200
Sphere-Episodes

0.0

0.5

1.0

ta
sk

Plot (24) - Spheres

Full Normal Binary None

Figure 5.1: Train results for contact frameworks defined in Table 5.1 (includes data from [38]).

66 CHAPTER 5. CONTACT SENSING AND GRASP REFINEMENT

5.2.2 Testing

Like in section 4.3.2, we perform 38400 experiments to evaluate the four contact sensing frame-
works. Figure 5.2 compares the test results.

Full Normal Binary None
Contact Sensing

0.0

0.5

1.0

H
ol

d
Su

cc
es

s

0.836 0.839 0.810 0.773

Plot (1) - All Obj. and W. Errors

Cuboid Cylinder Sphere
Object

0.0

0.5

1.0

0.
95

4

0.
93

1

0.
62

3

0.
96

8

0.
93

7

0.
61

3

0.
94

5

0.
93

0

0.
55

5

0.
90

7

0.
87

6

0.
53

8

Plot (2) - All Wrist Errors

A B C D E F G H
Wrist Error Case

0.0

0.5

1.0
Plot (3) - All Objects

A B C D E F G H
Wrist Error Case

0.0

0.5

1.0

H
ol

d
Su

cc
es

s

Plot (4) - Cuboids

A B C D E F G H
Wrist Error Case

0.0

0.5

1.0
Plot (5) - Cylinders

A B C D E F G H
Wrist Error Case

0.0

0.5

1.0
Plot (6) - Spheres

0.1 0.2 0.3 0.4
Object Mass

0.0

0.5

1.0

H
ol

d
Su

cc
es

s

Plot (7) - Cuboids

0.1 0.2 0.3 0.4
Object Mass

0.0

0.5

1.0
Plot (8) - Cylinders

0.1 0.2 0.3 0.4
Object Mass

0.0

0.5

1.0
Plot (9) - Spheres

Full Normal Binary None

Figure 5.2: Test results for contact frameworks defined in Table 5.1 (includes data from [38]).

Test Results Figure 5.2

(5.2-a) Major Result: Plot (1) shows that the full, normal, and binary frameworks which
receive contact feedback outperform the none framework by 6.3%, 6.6% and 3.7%,
respectively. Table 5.2 shows results of a one-sided, paired t-test investigating the
statistical significance of the finding that the normal framework’s mean performance
µnormal is the best of all frameworks.

(5.2-b) Major Result: We also see in Plot (1) that giving normal force feedback marginally
improves the binary framework by 2.9%. However, providing the full contact force
vector only provides a benefit of 2.6% compared to the binary framework.

(5.2-c) The normal framework, which performs the best after the defined number of training
steps, has success rates of 96.8% for cuboids, 93.7% for cylinders, and 61.3% for
spheres across all wrist errors.

5.3. DISCUSSION 67

(5.2-d) In Plot (2), it becomes clear that higher resolution contact feedback is particularly
effective for spheres as we observe a more significant improvement from the binary
to the normal and full frameworks for spheres than for cuboids and cylinders.

(5.2-e) Major Result: From the supplementary video material, we observe no fundamental
difference in behavior of the learned grasping strategies. The only exception is that
the none framework tends towards two-finger grasps on cuboids and cylinders.

Result µnormal > µfull µnormal > µbinary µnormal > µnone

p-value 0.2232 7.0177 10−11 1.3087 10−46

Table 5.2: Results of t-test for contact sensing comparison (includes data from [38]).

5.3 Discussion

Answering RQ 2

This study answers our second research objective RQ 2.

RQ 2: What is the relation between contact sensing resolution and tactile grasp
refinement success?

Result (5.2-a) shows the relation of interest. Our experiments found that the none baseline which
does not receive contact information is improved by 3.7% through binary contact data, by 6.6%

with accurate normal force information, and by 6.3% via the full force feedback. Overall, our main
conclusion is that contact sensing improves success rates of tactile grasp refinement algorithms.
These results align well with other research in the field which found that contact feedback increases
the performance of RL grasping [56] and manipulation algorithms [53, 54]. The improvement for
the normal force framework when compared to the binary and none frameworks are statistically
significant since the p-values in Table 5.2 for the results µnormal > µbinary and µnormal > µnone are
smaller than 0.01.

Comparing Normal and Binary Contact Feedback

Previous research [53, 54] concluded that accurate normal force feedback leads to similar success
rates as binary contact information for in-hand manipulation. Therefore, in this experiment we
specifically investigate whether these findings are reproducible in the tactile grasp refinement task.
We find in result (5.2-b) that the 2.9% improvement from binary contact signals to accurate normal
force readings is surprisingly small. But it is statistically significant, as mentioned above, since the
p-value < 0.01 for µnormal > µbinary in Table 5.2. However, from this marginal difference of 2.9%

we can only conclude that our results are similar to the ones by Melnik et al. [53, 54], who find that
their normal and binary frameworks perform approximately on par. Melnik et al. [53, 54] run on five
random seeds, while we train over 40. Perhaps, if Melnik et al. [53, 54] ran more experiments over

68 CHAPTER 5. CONTACT SENSING AND GRASP REFINEMENT

more seeds they would also find a marginal, but statistically significant improvement by providing
continuous normal force readings.

The Full Contact Sensing Framework

It is counter-intuitive that in (5.2-b) the performance increase of 2.9% yielded by the normal
framework compared to the binary one is larger than the 2.6% of the full force framework. We
expected that the full force framework provides valuable information about simulated tangential
forces which we hypothesize to be prominent in the grasp refinement and lifting task. It is important
to understand that the small performance difference of 0.3% is not statistically significant because
p-value in Table 5.2 for µnormal > µfull is > 0.01. We therefore conclude that the normal and
full framework perform approximately equally well. Nevertheless, let us discuss three potential
reasons for why the full framework does not yield the highest overall performance.

1. As shown in Table 5.1, the full framework has the largest state vector st ∈ R70. Therefore,
the full framework also has the most network parameters since the number of trainable
parameters in the first layer of the neural network linearly scales with the number of input
features. A larger network requires more training data, and therefore more environment
interactions. Future experiments should run for longer and identify if this improves success
rates.

2. As explained in section 4.2.4, we represent the tangential forces in the contact frame. To
make sense of this representation, the policy πφ will have to internally represent the concept
of the friction cone to understand which tangential forces lead to slippage at a contact. This
notion may be hard to learn through 25000 steps, a relatively small number of environment
interactions. Agents trained with the SAC [23] algorithm often train millions of steps [23]. A
factor that could complicate the learning of the friction cone concept is that the data from
which the network learns contains mostly sparse contact data. The contact data is only
non-zero if there is a contact on a link. Future investigations should explore an alternative
representation of these forces to enhance the usability of tangential force for the algorithm.
For example, the tangential force margins f̄i,cur to the friction cone from Figure 4.5 could be
given instead, which would also directly integrate the concept of the friction cone into the
provided tangential force vector. In any case, it would be interesting to scrutinize to what
extent the policy πφ uses the tangential force information in its current state through a feature
relevance analysis.

3. Simulated physical interactions are prone to instability due to contact chatter, especially in
robotic grasping simulations [28, 91]. Therefore, the contact forces may not always point
in physically meaningful directions as they attempt to satisfy the constraints of an LCP
that becomes numerically unstable. Consequently, these simulated contact forces may not
always constitute a good proxy of grasp success in simulation.

5.3. DISCUSSION 69

Similar Training Plots for Full, Normal, and Binary

Result (5.1-a) showed that that the training performance of the full, normal, and binary frameworks
looks almost identical across the training plots. In the training plots by Melnik et al. [53, 54],
it is also hard to distinguish which framework is the best performing by visual inspection alone
because the success rates lie close together. In our training plots, each data point only comes
from one wrist error object combination (O,E). Therefore, we only punctually evaluate the models
in the training plots, which reflects poorly on their overall performance. Therefore, to draw solid
conclusions, we should focus our attention on the test results, which provide a comprehensive
model evaluation in 240 experiments over three object types and all wrist error cases. Using the
test results, we made out differences in performance between the contact sensing frameworks as
discussed above.

The None Framework Stands Out

Result (5.1-b) demonstrated that the none framework initially learns fastest, which is most probably
due to its comparatively small state vector st ∈ R7. The none framework’s policy has less trainable
parameters and therefore requires less training data.

Furthermore, we noted in result (5.1-e) that the none framework applied more contact force
throughout the learning procedure. We hypothesize that the strategies of the none framework
learned less adaptive grasping behaviors and output a positive finger increment for most if not all
inputs. Policies that close the fingers regardless of the input would result in considerably larger
force magnitudes. It would be interesting to study the responses of the network to varying inputs.

Finally, the none framework not only receives no feedback about contact forces but also receives
no information on contact positions and normals, as shown in Table 5.1. Possibly the information
on contact positions and normals also affects grasp refinement behavior.

Performance of None Framework

In result (5.2-a), we found statistically significant improvements by providing grasp refinement
algorithms with contact information. However, the relative improvements to the none framework
are surprisingly small at 6.3%, 6.6%, and 3.7%. Previous research [56] draws a similar conclusion
and also finds that contact force measurements only improve algorithm performance by a small
margin of 2% to 5% depending on the object.

The none framework reaches adequate grasp success rates of 90.7% for cuboids, 87.6% for
cylinders, and improvable rates of 53.8% for spheres over all wrist errors in Plot (2) of Figure
5.2. These results suggest that when we provide an RL grasping algorithm with an expressive,
contact-based reward, such as ε and δ in this case, it can abstract much of the information relevant
for grasping most objects solely from joint positions. The conclusion that accurate contact sensing
may not always be required is valuable for designers of robotic hands since precise tactile sensors
are delicate and expensive hardware items. Furthermore, this conclusion once again stresses the
importance of the reward function, as we discovered that reducing the information content in the β

70 CHAPTER 5. CONTACT SENSING AND GRASP REFINEMENT

reward framework led to a more drastic drop in performance in result (4.12-a) than reducing the
expressiveness of the state vector.

Comparison to State-of-the-Art

Let us compare the results to state-of-the-art papers on tactile grasping with RL. Let us begin with
the work by Merzić et al. [56]. The authors conducted three experiments.

1. Firstly, they train one policy per pre-grasp, object combination. A pre-grasp is a wrist pose
generated in the vicinity of the object and is available in a database [36]. They train and test
on the same five objects and pre-grasps. They obtain success rates of 91% for a donut, 62%

for a bottle, 48% for a hammer, 46% for a drill, 37% for a tape.

2. Furthermore, they train one policy per object that copes with different initial wrist poses.
Success rates drop to 56.3% for a donut, 69.1% for a bottle, 38.7% for a hammer, 25.6% for
a drill, 41.5% for a tape.

3. Lastly, they find that adding noise to the object’s pose slightly improves results to 56.3% for a
donut, 70.6% for a bottle, 39.6% for a hammer, 28.0% for a drill, 44.4% for a tape.

Before comparing the results by Merzić et al. [56] with ours, let us highlight the differences between
ours and their experimental setup.

• Most importantly, Merzić et al. [56] assume perfect knowledge on the object pose and twist,
joint positions, and contact forces in their state vector. At the same time, we only provide the
hand’s joint positions in the none framework.

• They only actuate the fingers, and the wrist pose remains fixed. Further, we control the
fingers via incremental position changes while they actuate the robotic hand through torque
commands.

• They actuate all four DOF of the hand while we only actuate three DOF.

• In the first experiment, they test on previously seen initial pre-grasps and known objects,
while we test on 240 unseen objects and wrist pose combinations.

• They use a perfect pre-calculated wrist pose from a database [36] and do not add errors
to the pre-grasp. However, since their wrist pose is fixed, there would also be no way of
compensating errors in the wrist pose.

• When simulating calibration errors, they add noise to the object position information in the
state vector, but the actual object position stays the same. In our experiments, we move the
initial wrist pose and the object’s relative pose to the hand changes.

5.3. DISCUSSION 71

• The algorithms by Merzić et al. [56] were trained on one object, and hence users have to
select the right policy to grasp this specific object. The algorithms will likely struggle on
unseen objects. We train a single policy that unifies strategies to grasp different object types
(cuboids, cylinders, and spheres) of any unknown size and mass within the defined ranges
under a wrist error of up to 7 cm and 14 deg.

The none framework, which is the worst of all contact sensing frameworks, still reaches success
rates of +85% for unseen cuboids and cylinders and +50% for spheres under significant calibration
errors, and our best-performing frameworks reach picking rates of +93% and +55%, respectively.
We can therefore conclude that even the results of the none framework, which makes considerably
fewer assumptions on the state vector, are at least comparable to the results by Merzić et al. [56] if
not exceeding them.

The work by Wu et al. [99] is somewhat more comparable to our project since they also actuate
the wrist of the robot. While we learn the incremental wrist pose change, they apply a more
classical method to update the wrist pose. They achieve impressive picking rates of approximately
95% for no calibration error and 90% when adding 7.5 cm wrist position errors. They report these
results based on experiments in a simulator and mention similar success rates of ≈ 90% for 5

cm error on the real robot. By looking at plots (4) and (5) of Figure 5.2, we see that our results
for cuboids and cylinders are approximately equal to Wu et al. [99] when adding little to no wrist
pose error. However, as discussed earlier, more significant errors of, for example, 7 cm and 14

deg in wrist error case H decrease performance disproportionally to roughly 60% to 85%. Hence,
for significant wrist errors, Wu et al. [99] outperform our approach. Note that Wu et al. add no
rotational error to the wrist, which complicates comparing the success rates and presumably
makes their task slightly more manageable. Wu et al. [99] include only a few spherical objects in
their dataset, and they only report object-specific success rates when adding no calibration error.
Hence, we can only compare the success rates on spheres for the wrist error case A. Wu et al.’s
[99] picking rates for spheres are approximately 30% higher than ours. While for spheres, Wu et al.
[99] certainly outperform our approach, the results for grasp refinement on cuboids and cylinders
are comparable.

Large Contact Forces

The contact forces in Plot (12) of Figures 4.11 and 5.1 appear to be quite large. Let us investigate
what the minimum contact force on a two-finger grasp is to hold an object in place that weights
fg. Figure 5.3 shows a grasp with two contacts. The friction coefficient in the example is µ = 1.
Therefore the opening angle of the friction cone is 45 deg. To obtain the minimum contact forces
to balance fg we must apply the contact forces f1 and f2 on the boundary of the friction cone
where tangential force is maximized and where the contacts are still in static contact and are not
yet sliding. The contact forces must balance the object’s weight f1 + f2 = −fg. Therefore the
tangential contact force at each contact must be −fg

2 (and since µ = 1 also the normal component
must have the same magnitude). To achieve this tangential force in the shown configuration, the
contact force magnitudes must be ‖fi‖ =

√
2fg
2 at each contact. Hence, the overall smallest

72 CHAPTER 5. CONTACT SENSING AND GRASP REFINEMENT

contact force magnitude fc to balance the object weight fg using two contacts is
√

2fg as shown
in equation (5.1).

p2

n1
f1,cur

n2
f2,cur

f1,m
f2,m

p1

fg

pc
45° − fg

2

−fg

f1 f2

Figure 5.3: A grasp with two contact points p1 and p2 and friction cones at each contact. The
vector −fg must balance the object’s weight vector fg. This is the configuration in

which the sum of the contact force magnitudes
∑nc

i ‖fi‖ is minimized.

min fc = min

nc∑
i

‖fi‖ = 2

√
2fg
2

=
√

2fg (5.1)

The mass range of our objects is 0.1 to 0.4 kg as indicated in Table 4.3. When sampling uniformly
from this range the expected mean mass is 0.4kg+0.1kg

2 = 0.25kg. The minimum contact force to hold
an object in place averaged over all objects should therefore be

√
2fg =

√
2× 0.25kg× 9.81 N

kg ≈
3.5N. Let us make some assumptions to obtain a reasonable minimum force estimate for our
experiment in Figure 4.8. Additionally to holding the object, the grasp must resist the vertical
acceleration generated by lifting it. Let us be generous with this estimate and say it is half of
the object’s weight 0.5fg. Furthermore, we should add a safety margin to prevent slipping in
uncertain situations. Humans tend to apply 10% to 40% more grasp force than would theoretically
be necessary to prevent slipping [31]. Let us again be generous with this estimate and say the
grasp on our robotic hand should apply 50% more grasp forces than would be required. Finally,
we should expect roughly 3.5N× 1.5× 1.5 = 7.9N of total grasp forces while executing the grasp
defined in Figure 4.8. Note that this value may be different for a grasp with three contact points,
but let us work with this value as a rough estimate.

The contact force magnitudes reported in Plot (12) of Figure 5.1 are in the order of 30N to
40N for the successful frameworks by the end of the training procedure. Using our previously
calculated estimate, we can now say that the contact forces are about four to five times larger than
expected. This conclusion is problematic, especially for fragile objects. It is known that physics
engines sometimes have problems producing physically meaningful contact forces with realistic
magnitudes as discussed in section 2.2.3 and [91]. Therefore, it would be essential to evaluate
how large the contact forces get in the real world on robotic hardware to make a genuine claim if

5.3. DISCUSSION 73

the presented force measurements pose a problem. The none framework that receives only the
joint position data would be especially suitable for such tests because this state information st is
available on the real robotic hand.

6 Conclusion

6.1 Summary

In this work, we investigate two research questions. First, we examine the potential of using analytic
grasp stability metrics as reward functions for RL algorithms that refine grasps on a three-fingered
robotic hand. We design an experiment that includes refining a grasp on an object to compensate
for calibration errors in the robot’s wrist pose. We compare the performance of several reward
functions by lifting and holding the object in place after refinement and measuring the experiment’s
outcome. We find classical methods of grasp analysis to be a valuable toolbox for designing
rewards in robotic grasping as all of the rewards based on these techniques outperform a binary
reward baseline. Furthermore, we show that stability metrics concerned with finger placement and
rewards based on current force measurements complement each other well. A combination of
both metrics yields the highest average success rates.

In a second experiment, we study the effect of contact sensor resolution on tactile grasp
refinement success. We find that while tactile feedback marginally improves grasping outcomes,
the policies trained with crude feedback from joint position data also reach adequate success rates
on most objects when trained with rich, contact-based rewards. This conclusion highlights the
importance of the thorough design of well-justified reward functions in robotic grasping. It also
raises interesting questions about the significance of accurate tactile sensing on robotic hands in
the context of RL. Last but not least, we compare our results to previous research in the field and
conclude that our success rates are at least similar to the state-of-the-art if not exceeding some
works.

6.2 Future Work

There are various exciting avenues for future work.

• As described in Figure 4.7, the agent can communicate with the real robotic hand easily.
Future experiments should use this interface and test the performance of the agents trained
in simulation on the real robotic hardware. It would be interesting to discover differences
in how well each reward framework transfers to the real world. The none framework would
be an ideal policy to test on the hardware first since it requires no contact data and hence
works with little to no setup. The normal and binary policies are translatable to the real
hand by approximating the contact positions and normals in the state vector through forward
kinematics. Agents of the full contact framework assume tangential forces and can not be

75

76 CHAPTER 6. CONCLUSION

transferred to the real hand as the hardware in its current form can only measure normal
forces.

• To improve the success rates of spheres, the hand should actuate its fourth DOF in future
experiments. Currently, we approximate the hand geometry with cuboids to allow for
fast collision checking. Future training procedures should use the real finger and palm
geometries of the hand. The rounded finger crosssections will hopefully improve success
rates on spheres.

• It would be interesting to evaluate which input features of the agents are most relevant and
influence the agent’s action the most. Thereby, we could better understand the contribution
of contact position and normal sensing to grasp success, which we did not explicitly evaluate
in our experiments. The SHAP (SHapley Additive exPlanations) [49] feature importance
algorithm could be an exciting method to conduct these experiments.

• Future work could also study the effect of contact position and normal sensing through
ablation studies (i.e., train model without these inputs and check its performance).

• Furthermore, we should compare our results against a non-RL baseline. For example, we
could use a simple open-loop controller that closes the hand’s fingers using position incre-
ments. This comparison would give us an estimate of how helpful the iterative adjustments
to the wrist and finger positions through RL are to more basic actuation schemes.

• Future reward functions should also include a force minimization term. Objects can be fragile,
and it is also desirable to minimize the power consumption of the hand on mobile robotic
systems.

• In the discussion sections 4.4 and 5.3 we already gave instructions for future experiments
that investigate the hypotheses we made to explain certain results.

Bibliography

[1] Y. Bai and C. K. Liu. “Dexterous manipulation using both palm and fingers.” In: 2014 IEEE
International Conference on Robotics and Automation (ICRA). 2014, pp. 1560–1565. DOI:
10.1109/ICRA.2014.6907059.

[2] L. Bo, X. Ren, and D. Fox. “Hierarchical Matching Pursuit for Image Classification: Architec-
ture and Fast Algorithms.” In: Advances in Neural Information Processing Systems. Ed. by
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger. Vol. 24. Curran
Associates, Inc., 2011.

[3] C. Borst, M. Fischer, and G. Hirzinger. “A fast and robust grasp planner for arbitrary 3D
objects.” In: Proceedings 1999 IEEE International Conference on Robotics and Automation
(Cat. No.99CH36288C). Vol. 3. 1999, 1890–1896 vol.3. DOI: 10.1109/ROBOT.1999.
770384.

[4] C. Borst, M. Fischer, and G. Hirzinger. “Grasp planning: how to choose a suitable task
wrench space.” In: IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004. Vol. 1. 2004, 319–325 Vol.1. DOI: 10.1109/ROBOT.2004.
1307170.

[5] M. Breyer, F. Furrer, T. Novkovic, R. Siegwart, and J. I. Nieto. “Flexible Robotic Grasping
with Sim-to-Real Transfer based Reinforcement Learning.” In: CoRR abs/1803.04996
(2018). arXiv: 1803.04996.

[6] M. Buss, H. Hashimoto, and J. Moore. “Dextrous hand grasping force optimization.” In:
IEEE Transactions on Robotics and Automation 12.3 (1996), pp. 406–418. DOI: 10.1109/
70.499823.

[7] R. Calandra, A. Owens, D. Jayaraman, J. Lin, W. Yuan, J. Malik, E. H. Adelson, and S.
Levine. “More than a feeling: Learning to grasp and regrasp using vision and touch.” In:
IEEE Robotics and Automation Letters 3.4 (2018), pp. 3300–3307.

[8] Y. Chebotar, K. Hausman, Z. Su, G. S. Sukhatme, and S. Schaal. “Self-supervised regrasp-
ing using spatio-temporal tactile features and reinforcement learning.” In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2016, pp. 1960–1966.
DOI: 10.1109/IROS.2016.7759309.

[9] Y. Chebotar, K. Hausman, O. Kroemer, G. S. Sukhatme, and S. Schaal. “Generalizing
regrasping with supervised policy learning.” In: International Symposium on Experimental
Robotics. Springer. 2016, pp. 622–632.

77

https://doi.org/10.1109/ICRA.2014.6907059
https://doi.org/10.1109/ROBOT.1999.770384
https://doi.org/10.1109/ROBOT.1999.770384
https://doi.org/10.1109/ROBOT.2004.1307170
https://doi.org/10.1109/ROBOT.2004.1307170
https://arxiv.org/abs/1803.04996
https://doi.org/10.1109/70.499823
https://doi.org/10.1109/70.499823
https://doi.org/10.1109/IROS.2016.7759309

78 Bibliography

[10] C. A. Coulomb. Théorie des machines simples en ayant égard au frottement de leurs
parties et à la roideur des cordages. Bachelier, 1821.

[11] E. Coumans et al. “Bullet physics library.” In: Open source: bulletphysics. org (2013).

[12] E. Coumans and Y. Bai. PyBullet, a Python module for physics simulation for games,
robotics and machine learning. http://pybullet.org. 2016–2019.

[13] H. Dang and P. K. Allen. “Stable grasping under pose uncertainty using tactile feedback.”
In: Autonomous Robots 36.4 (2014), pp. 309–330.

[14] Z. Deng, Y. Jonetzko, L. Zhang, and J. Zhang. “Grasping force control of multi-fingered
robotic hands through tactile sensing for object stabilization.” In: Sensors 20.4 (2020),
p. 1050.

[15] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez. “Gelslim: A high-resolution,
compact, robust, and calibrated tactile-sensing finger.” In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 1927–1934.

[16] E. Drumwright, J. Hsu, N. Koenig, and D. Shell. “Extending Open Dynamics Engine for
Robotics Simulation.” In: Simulation, Modeling, and Programming for Autonomous Robots.
Ed. by N. Ando, S. Balakirsky, T. Hemker, M. Reggiani, and O. von Stryk. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 38–50. ISBN: 978-3-642-17319-6.

[17] C. de Farias, N. Marturi, R. Stolkin, and Y. Bekiroglu. “Simultaneous Tactile Exploration
and Grasp Refinement for Unknown Objects.” In: IEEE Robotics and Automation Letters
(Feb. 10, 2021).

[18] J. Felip and A. Morales. “Robust sensor-based grasp primitive for a three-finger robot
hand.” In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.
2009, pp. 1811–1816. DOI: 10.1109/IROS.2009.5354760.

[19] C. Ferrari and J. Canny. “Planning optimal grasps.” In: Proceedings 1992 IEEE International
Conference on Robotics and Automation. 1992, 2290–2295 vol.3. DOI: 10.1109/ROBOT.
1992.219918.

[20] S. Fujimoto, H. Hoof, and D. Meger. “Addressing function approximation error in actor-critic
methods.” In: International Conference on Machine Learning. PMLR. 2018, pp. 1587–1596.

[21] K. Ganguly, B. Sadrfaridpour, K. B. Kidambi, C. Fermüller, and Y. Aloimonos. “Grasping in
the Dark: Compliant Grasping using Shadow Dexterous Hand and BioTac Tactile Sensor.”
In: arXiv preprint arXiv:2011.00712 (2020).

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor. 2018. arXiv: 1801.01290
[cs.LG].

[23] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A.
Gupta, P. Abbeel, et al. “Soft actor-critic algorithms and applications.” In: arXiv preprint
arXiv:1812.05905 (2018).

bulletphysics.org
http://pybullet.org
https://doi.org/10.1109/IROS.2009.5354760
https://doi.org/10.1109/ROBOT.1992.219918
https://doi.org/10.1109/ROBOT.1992.219918
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290

Bibliography 79

[24] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition.” In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[25] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. “Support vector machines.”
In: IEEE Intelligent Systems and their Applications 13.4 (1998), pp. 18–28. DOI: 10.1109/
5254.708428.

[26] F. R. Hogan, M. Bauza, O. Canal, E. Donlon, and A. Rodriguez. “Tactile regrasp: Grasp
adjustments via simulated tactile transformations.” In: 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 2963–2970.

[27] H. van Hoof, T. Hermans, G. Neumann, and J. Peters. “Learning robot in-hand manipulation
with tactile features.” In: 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids). 2015, pp. 121–127. DOI: 10.1109/HUMANOIDS.2015.7363524.

[28] J. M. Hsu and S. C. Peters. “Extending Open Dynamics Engine for the DARPA Virtual
Robotics Challenge.” In: Proceedings of the 4th International Conference on Simulation,
Modeling, and Programming for Autonomous Robots - Volume 8810. SIMPAR 2014. Berg-
amo, Italy: Springer-Verlag, 2014, pp. 37–48. ISBN: 9783319118994. DOI: 10.1007/978-
3-319-11900-7_4.

[29] W. Hu, C. Yang, K. Yuan, and Z. Li. Reaching, Grasping and Re-grasping: Learning
Multimode Grasping Skills. 2020. arXiv: 2002.04498 [cs.RO].

[30] S. Ivaldi, V. Padois, and F. Nori. Tools for dynamics simulation of robots: a survey based on
user feedback. 2014. arXiv: 1402.7050 [cs.RO].

[31] R. S. Johansson and J. R. Flanagan. “Coding and use of tactile signals from the fingertips
in object manipulation tasks.” In: Nature Reviews Neuroscience 10.5 (2009), pp. 345–359.

[32] I. T. Jolliffe. “Principal Component Analysis and Factor Analysis.” In: Principal Component
Analysis. New York, NY: Springer New York, 1986, pp. 115–128. ISBN: 978-1-4757-1904-8.
DOI: 10.1007/978-1-4757-1904-8_7.

[33] S. Joshi, S. Kumra, and F. Sahin. “Robotic grasping using deep reinforcement learning.” In:
2020 IEEE 16th International Conference on Automation Science and Engineering (CASE).
IEEE. 2020, pp. 1461–1466.

[34] I. Kao, K. Lynch, and J. W. Burdick. “Contact Modeling and Manipulation.” In: Springer
Handbook of Robotics. Ed. by B. Siciliano and O. Khatib. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 647–669. ISBN: 978-3-540-30301-5. DOI: 10.1007/978-3-
540-30301-5_28.

[35] D. Kappler, J. Bohg, and S. Schaal. “Leveraging big data for grasp planning.” In: 2015 IEEE
International Conference on Robotics and Automation (ICRA). 2015, pp. 4304–4311. DOI:
10.1109/ICRA.2015.7139793.

https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/HUMANOIDS.2015.7363524
https://doi.org/10.1007/978-3-319-11900-7_4
https://doi.org/10.1007/978-3-319-11900-7_4
https://arxiv.org/abs/2002.04498
https://arxiv.org/abs/1402.7050
https://doi.org/10.1007/978-1-4757-1904-8_7
https://doi.org/10.1007/978-3-540-30301-5_28
https://doi.org/10.1007/978-3-540-30301-5_28
https://doi.org/10.1109/ICRA.2015.7139793

80 Bibliography

[36] D. Kappler, J. Bohg, and S. Schaal. “Leveraging big data for grasp planning.” In: 2015 IEEE
International Conference on Robotics and Automation (ICRA). 2015, pp. 4304–4311. DOI:
10.1109/ICRA.2015.7139793.

[37] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber. “A survey on learning-based
robotic grasping.” In: Current Robotics Reports (2020), pp. 1–11.

[38] A. Koenig, Z. Liu, L. Janson, and R. Howe. Tactile Grasp Refinement using Deep Reinforce-
ment Learning and Analytic Grasp Stability Metrics. 2021. arXiv: 2109.11234 [cs.RO].

[39] A. Koenig, F. Rodriguez y Baena, and R. Secoli. “Gesture-Based Teleoperated Grasping for
Educational Robotics.” In: IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), 2021. 2021.

[40] N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an open-source
multi-robot simulator.” In: 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3. 2004, 2149–2154 vol.3. DOI:
10.1109/IROS.2004.1389727.

[41] N. Koenig and A. Howard. “Design and Use Paradigms for Gazebo, An Open-Source
Multi-Robot Simulator.” In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. Sendai, Japan, Sept. 2004, pp. 2149–2154.

[42] O. Kroemer, R. Detry, J. Piater, and J. Peters. “Combining active learning and reactive
control for robot grasping.” In: Robotics and Autonomous Systems 58.9 (2010). Hybrid
Control for Autonomous Systems, pp. 1105–1116. ISSN: 0921-8890. DOI: https://doi.
org/10.1016/j.robot.2010.06.001.

[43] J. Lee, M. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. Srinivasa, M. Stilman, and K. Liu. “DART:
Dynamic Animation and Robotics Toolkit.” In: The Journal of Open Source Software 3 (Feb.
2018), p. 500. DOI: 10.21105/joss.00500.

[44] M. Li, Y. Bekiroglu, D. Kragic, and A. Billard. “Learning of grasp adaptation through ex-
perience and tactile sensing.” In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2014, pp. 3339–3346. DOI: 10.1109/IROS.2014.6943027.

[45] Q. Li, O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter. “A review of tactile
information: Perception and action through touch.” In: IEEE Transactions on Robotics 36.6
(2020), pp. 1619–1634.

[46] Y. Li, Q. Lei, C. Cheng, G. Zhang, W. Wang, and Z. Xu. “A review: machine learning on
robotic grasping.” In: Eleventh International Conference on Machine Vision (ICMV 2018).
Ed. by A. Verikas, D. P. Nikolaev, P. Radeva, and J. Zhou. Vol. 11041. International Society
for Optics and Photonics. SPIE, 2019, pp. 775–783. DOI: 10.1117/12.2522945.

[47] Z. Li and S. Sastry. “Task-oriented optimal grasping by multifingered robot hands.” In: IEEE
Journal on Robotics and Automation 4.1 (1988), pp. 32–44. DOI: 10.1109/56.769.

[48] Q. Lu, M. V. der Merwe, B. Sundaralingam, and T. Hermans. Multi-Fingered Grasp Planning
via Inference in Deep Neural Networks. 2020. arXiv: 2001.09242 [cs.RO].

https://doi.org/10.1109/ICRA.2015.7139793
https://arxiv.org/abs/2109.11234
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/https://doi.org/10.1016/j.robot.2010.06.001
https://doi.org/https://doi.org/10.1016/j.robot.2010.06.001
https://doi.org/10.21105/joss.00500
https://doi.org/10.1109/IROS.2014.6943027
https://doi.org/10.1117/12.2522945
https://doi.org/10.1109/56.769
https://arxiv.org/abs/2001.09242

Bibliography 81

[49] S. M. Lundberg and S.-I. Lee. “A Unified Approach to Interpreting Model Predictions.” In:
Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates,
Inc., 2017, pp. 4765–4774.

[50] H. R. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Silver, and R. S. Sutton. “Convergent
temporal-difference learning with arbitrary smooth function approximation.” In: NIPS. 2009,
pp. 1204–1212.

[51] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg.
“Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and
Analytic Grasp Metrics.” In: CoRR abs/1703.09312 (2017). arXiv: 1703.09312.

[52] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff, T. Kröger,
J. Kuffner, and K. Goldberg. “Dex-Net 1.0: A cloud-based network of 3D objects for robust
grasp planning using a Multi-Armed Bandit model with correlated rewards.” In: 2016 IEEE
International Conference on Robotics and Automation (ICRA). 2016, pp. 1957–1964. DOI:
10.1109/ICRA.2016.7487342.

[53] A. Melnik, L. Lach, M. Plappert, T. Korthals, R. Haschke, and H. Ritter. “Tactile sensing
and deep reinforcement learning for in-hand manipulation tasks.” In: IROS Workshop on
Autonomous Object Manipulation. 2019.

[54] A. Melnik, L. Lach, M. Plappert, T. Korthals, R. Haschke, and H. Ritter. “Using Tactile
Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy
Gradients for Simulated In-Hand Manipulation Tasks.” In: Frontiers in Robotics and AI 8
(2021), p. 57. ISSN: 2296-9144. DOI: 10.3389/frobt.2021.538773.

[55] D. Merkel. “Docker: lightweight linux containers for consistent development and deploy-
ment.” In: Linux journal 2014.239 (2014), p. 2.

[56] H. Merzić, M. Bogdanović, D. Kappler, L. Righetti, and J. Bohg. “Leveraging Contact Forces
for Learning to Grasp.” In: 2019 International Conference on Robotics and Automation
(ICRA). 2019, pp. 3615–3621. DOI: 10.1109/ICRA.2019.8793733.

[57] B. Mirtich and J. Canny. “Easily computable optimum grasps in 2-D and 3-D.” In: Proceed-
ings of the 1994 IEEE International Conference on Robotics and Automation. IEEE. 1994,
pp. 739–747.

[58] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. “Human-level control through deep
reinforcement learning.” In: nature 518.7540 (2015), pp. 529–533.

[59] M. Q. Mohammed, K. L. Chung, and C. S. Chyi. “Review of Deep Reinforcement Learning-
based Object Grasping: Techniques, Open Challenges and Recommendations.” In: IEEE
Access (2020).

https://arxiv.org/abs/1703.09312
https://doi.org/10.1109/ICRA.2016.7487342
https://doi.org/10.3389/frobt.2021.538773
https://doi.org/10.1109/ICRA.2019.8793733

82 Bibliography

[60] D. Morrison, P. Corke, and J. Leitner. “Closing the Loop for Robotic Grasping: A Real-time,
Generative Grasp Synthesis Approach.” In: Proc. of Robotics: Science and Systems (RSS).
2018.

[61] D. Morrison, P. Corke, and J. Leitner. “Learning robust, real-time, reactive robotic grasping.”
In: The International Journal of Robotics Research 39.2-3 (2020), pp. 183–201. DOI:
10.1177/0278364919859066. eprint: https://doi.org/10.1177/0278364919859066.

[62] A. Murali, Y. Li, D. Gandhi, and A. Gupta. “Learning to Grasp Without Seeing.” In: Pro-
ceedings of the 2018 International Symposium on Experimental Robotics. Ed. by J. Xiao,
T. Kröger, and O. Khatib. Cham: Springer International Publishing, 2020, pp. 375–386.
ISBN: 978-3-030-33950-0.

[63] Y. S. Narang, B. Sundaralingam, K. Van Wyk, A. Mousavian, and D. Fox. “Interpreting
and predicting tactile signals for the SynTouch Biotac.” In: arXiv preprint arXiv:2101.05452
(2021).

[64] A. Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations:
Theory and application to reward shaping.” In: In Proceedings of the Sixteenth International
Conference on Machine Learning. Morgan Kaufmann, 1999, pp. 278–287.

[65] L. U. Odhner, L. P. Jentoft, M. R. Claffee, N. Corson, Y. Tenzer, R. R. Ma, M. Buehler,
R. Kohout, R. D. Howe, and A. M. Dollar. “A compliant, underactuated hand for robust
manipulation.” In: The International Journal of Robotics Research 33.5 (2014), pp. 736–
752.

[66] S. Olivier. Lecture notes on the Soft Actor-Critic algorithm. URL: http://pages.isir.
upmc.fr/~sigaud/teach/sac.pdf.

[67] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. “Online movement adaptation based
on previous sensor experiences.” In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2011, pp. 365–371. DOI: 10.1109/IROS.2011.6095059.

[68] O.-M. Pedersen, E. Misimi, and F. Chaumette. “Grasping unknown objects by coupling
deep reinforcement learning, generative adversarial networks, and visual servoing.” In:
2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020,
pp. 5655–5662.

[69] W. PENFIELD and E. BOLDREY. “SOMATIC MOTOR AND SENSORY REPRESENTATION
IN THE CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION1.”
In: Brain 60.4 (Dec. 1937), pp. 389–443. ISSN: 0006-8950. DOI: 10.1093/brain/60.4.389.
eprint: https://academic.oup.com/brain/article-pdf/60/4/389/948982/60-4-
389.pdf.

[70] J. Peters, K. Mülling, and Y. Altün. “Relative Entropy Policy Search.” In: Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI’10. Atlanta, Georgia: AAAI
Press, 2010, pp. 1607–1612.

https://doi.org/10.1177/0278364919859066
https://doi.org/10.1177/0278364919859066
http://pages.isir.upmc.fr/~sigaud/teach/sac.pdf
http://pages.isir.upmc.fr/~sigaud/teach/sac.pdf
https://doi.org/10.1109/IROS.2011.6095059
https://doi.org/10.1093/brain/60.4.389
https://academic.oup.com/brain/article-pdf/60/4/389/948982/60-4-389.pdf
https://academic.oup.com/brain/article-pdf/60/4/389/948982/60-4-389.pdf

Bibliography 83

[71] S. Peters and J. Hsu. Comparison of Rigid Body Dynamic Simulators for Robotic Simulation
in Gazebo. https://www.osrfoundation.org/wordpress2/wp-content/uploads/
2015/04/roscon2014_scpeters.pdf. ROSCon 2014.

[72] N. Pollard. “Synthesizing grasps from generalized prototypes.” In: Proceedings of IEEE
International Conference on Robotics and Automation. Vol. 3. 1996, 2124–2130 vol.3. DOI:
10.1109/ROBOT.1996.506184.

[73] D. Prattichizzo and J. C. Trinkle. “Grasping.” In: Springer Handbook of Robotics. Ed. by B.
Siciliano and O. Khatib. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 671–700.
ISBN: 978-3-540-30301-5. DOI: 10.1007/978-3-540-30301-5_29.

[74] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng.
“ROS: an open-source Robot Operating System.” In: ICRA Workshop on Open Source
Software. 2009.

[75] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable Baselines3.
https://github.com/DLR-RM/stable-baselines3. 2019.

[76] J. Reinecke, A. Dietrich, F. Schmidt, and M. Chalon. “Experimental comparison of slip
detection strategies by tactile sensing with the BioTac® on the DLR hand arm system.”
In: 2014 IEEE international Conference on Robotics and Automation (ICRA). IEEE. 2014,
pp. 2742–2748.

[77] RightHand Robotics. ReFlex Product Page. URL: https://www.labs.righthandrobotics.
com/reflexhand (visited on 11/07/2021).

[78] M. A. Roa and R. Suárez. “Grasp quality measures: review and performance.” In: Au-
tonomous robots 38.1 (2015), pp. 65–88.

[79] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd. USA: Prentice
Hall Press, 2009. ISBN: 0136042597.

[80] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. “Trust Region Policy Optimiza-
tion.” In: Proceedings of the 32nd International Conference on Machine Learning. Ed. by
F. Bach and D. Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France:
PMLR, July 2015, pp. 1889–1897.

[81] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. “Trust Region Policy Optimiza-
tion.” In: Proceedings of the 32nd International Conference on Machine Learning. Ed. by
F. Bach and D. Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France:
PMLR, July 2015, pp. 1889–1897.

[82] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. 2017. arXiv: 1707.06347 [cs.LG].

[83] W. Schultz. “Predictive reward signal of dopamine neurons.” In: Journal of neurophysiology
80.1 (1998), pp. 1–27.

[84] H. Seyffarth and D. Denny-Brown. “The grasp reflex and the instinctive grasp reaction.” In:
Brain: a journal of neurology (1948).

https://www.osrfoundation.org/wordpress2/wp-content/uploads/2015/04/roscon2014_scpeters.pdf
https://www.osrfoundation.org/wordpress2/wp-content/uploads/2015/04/roscon2014_scpeters.pdf
https://doi.org/10.1109/ROBOT.1996.506184
https://doi.org/10.1007/978-3-540-30301-5_29
https://github.com/DLR-RM/stable-baselines3
https://www.labs.righthandrobotics.com/reflexhand
https://www.labs.righthandrobotics.com/reflexhand
https://arxiv.org/abs/1707.06347

84 Bibliography

[85] M. Shah, R. D. Eastman, and T. Hong. “An Overview of Robot-Sensor Calibration Methods
for Evaluation of Perception Systems.” In: Proceedings of the Workshop on Performance
Metrics for Intelligent Systems. PerMIS ’12. College Park, Maryland: Association for Comput-
ing Machinery, 2012, pp. 15–20. ISBN: 9781450311267. DOI: 10.1145/2393091.2393095.

[86] C. E. Shannon. “A mathematical theory of communication.” In: The Bell system technical
journal 27.3 (1948), pp. 379–423.

[87] M. A. Sherman, A. Seth, and S. L. Delp. “Simbody: multibody dynamics for biomedical
research.” In: Procedia IUTAM 2 (2011). IUTAM Symposium on Human Body Dynamics,
pp. 241–261. ISSN: 2210-9838. DOI: https://doi.org/10.1016/j.piutam.2011.04.
023.

[88] D. Silver. Lectures on Reinforcement Learning. URL: https://www.davidsilver.uk/
teaching/. 2015.

[89] D. Silver, S. Singh, D. Precup, and R. S. Sutton. “Reward is enough.” In: Artificial Intelligence
299 (2021), p. 103535. ISSN: 0004-3702. DOI: https://doi.org/10.1016/j.artint.
2021.103535.

[90] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cambridge, MA,
USA: A Bradford Book, 2018. ISBN: 0262039249.

[91] J. R. Taylor, E. M. Drumwright, and J. Hsu. “Analysis of grasping failures in multi-rigid
body simulations.” In: 2016 IEEE International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR). 2016, pp. 295–301. DOI: 10.1109/
SIMPAR.2016.7862410.

[92] Y. Tenzer, L. P. Jentoft, and R. D. Howe. “The Feel of MEMS Barometers: Inexpensive and
Easily Customized Tactile Array Sensors.” In: IEEE Robotics Automation Magazine 21.3
(2014), pp. 89–95. DOI: 10.1109/MRA.2014.2310152.

[93] H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning with double q-
learning.” In: Proceedings of the AAAI conference on artificial intelligence. Vol. 30. 1.
2016.

[94] F. Veiga, R. Akrour, and J. Peters. “Hierarchical Tactile-Based Control Decomposition of
Dexterous In-Hand Manipulation Tasks.” In: Frontiers in Robotics and AI 7 (2020).

[95] F. Veiga, B. Edin, and J. Peters. “Grip stabilization through independent finger tactile
feedback control.” In: Sensors 20.6 (2020), p. 1748.

[96] Q. Wan, R. P. Adams, and R. D. Howe. “Variability and predictability in tactile sensing
during grasping.” In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). 2016, pp. 158–164. DOI: 10.1109/ICRA.2016.7487129.

[97] C. J. Watkins and P. Dayan. “Q-learning.” In: Machine learning 8.3-4 (1992), pp. 279–292.

[98] J. Weisz and P. K. Allen. “Pose error robust grasping from contact wrench space metrics.”
In: 2012 IEEE International Conference on Robotics and Automation. 2012, pp. 557–562.
DOI: 10.1109/ICRA.2012.6224697.

https://doi.org/10.1145/2393091.2393095
https://doi.org/https://doi.org/10.1016/j.piutam.2011.04.023
https://doi.org/https://doi.org/10.1016/j.piutam.2011.04.023
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://doi.org/https://doi.org/10.1016/j.artint.2021.103535
https://doi.org/https://doi.org/10.1016/j.artint.2021.103535
https://doi.org/10.1109/SIMPAR.2016.7862410
https://doi.org/10.1109/SIMPAR.2016.7862410
https://doi.org/10.1109/MRA.2014.2310152
https://doi.org/10.1109/ICRA.2016.7487129
https://doi.org/10.1109/ICRA.2012.6224697

Bibliography 85

[99] B. Wu, I. Akinola, J. Varley, and P. Allen. “MAT: Multi-fingered adaptive tactile grasping via
deep reinforcement learning.” In: arXiv preprint arXiv:1909.04787 (2019).

[100] M. M. Zhang. “Tactile perception and Visuotactile integration for robotic exploration.” PhD
thesis. University of Pennsylvania, 2019.

[101] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. “Maximum entropy inverse
reinforcement learning.” In: Aaai. Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.

	Acknowledgments
	Abstract
	Nomenclature
	Acronyms
	List of Figures
	List of Tables
	Contents
	Introduction
	The Human Perspective
	The Robot Perspective
	Research Questions
	Outline

	Background
	Reinforcement Learning
	Taxonomy
	The Action-Perception Loop
	Markov Decision Processes
	Rewards and Returns
	Policies and Value Functions
	Optimal Policies and Optimal Value Functions
	Soft Actor-Critics

	Simulating Robotic Grasping
	Motivation
	Robotic Hand
	Simulation Software
	The ReFlex Simulation Stack

	Related Works
	Taxonomy
	Data-Driven Tactile Grasp Refinement
	Comparison

	Reward Design and Grasp Refinement
	Analytic Grasp Stability Metrics
	Largest-Minimum Resisted Wrench
	Measuring Resistance to Pure Forces and Torques
	Force-Agnostic Grasp Stability Metrics
	Summary

	Experimental Setup
	Algorithm Overview
	Training Dataset
	Test Dataset
	State and Action Space
	Hyper-parameters

	Results
	Training
	Testing

	Discussion

	Contact Sensing and Grasp Refinement
	Experimental Setup
	Results
	Training
	Testing

	Discussion

	Conclusion
	Summary
	Future Work

	Bibliography

