
Neuroprosthetics - Exercise 1
Alexander Koenig

16. November 2019

1 Signal Generation

A superposition of signals can be calculated with equation 1 where Ao is the signal offset,
and Ai is the amplitude of the frequency component Fi.

f(t) = Ao +
n!

i=1
Ai · sin(2πFi · t) (1)

Figure 1 shows the superposition of three signals with the below properties and an offset
Ao of 3. The signal was created with equation 1 and a sampling rate of 100kHz.

i Ai Fi

1 1 100 Hz
2 1.5 600 Hz
3 2 9 kHz

2 Single Sided Spectrum

Figure 2 shows the reconstructed single-sided amplitude spectra of the previously pre-
sented superimposed signal with different sample rates. The single-sided spectra were
calculated by using NumPy’s implementation of the Fast Fourier Transformation (FFT).
It becomes clear that for a sample rate of 100kHz and 20kHz the underlying frequen-
cies of the signal can be correctly reconstructed. However, this is not the case for the
sampling rate of 10kHz as a frequency bin at 1kHz can be observed although it does not
correspond to a base frequency.

In signal processing, this phenomenon is called aliasing. Aliasing effects occur if the
analyzed signal contains frequencies that are higher than half of the sampling rate.
Mathematically, this is expressed by the Nyquist-Shannon sampling theorem (equation
3). The corresponding threshold is called the Nyquist frequency (equation 2).

1



Figure 1: First 100ms of superimposed signal

fnyquist = 1
2 · fsampling (2)

fsignal < fnyquist (3)

In the described case the Nyquist frequency is fnyquist = 1
2 · 10kHz = 5kHz. This in turn

means that to fully reconstruct the signal it must not contain any frequencies greater or
equal to 5kHz. However, since the base frequency F3 = 9kHz is greater than the Nyquist
frequency, the signal cannot be correctly reconstructed and aliasing effects occur. To
prevent aliasing a low-pass filter can be applied to the signal before the calculation of
the spectrum.
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Figure 2: Single sided amplitude spectra for different sample rates
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Neuroprosthetics - Exercise 2
Alexander Koenig

24. November 2019

1 Plot Slope Fields and Isoclines

Figures 1 and 2 show the slope fields and isoclines for the ordinary differential equations
(ODE) 1 and 2 respectively. An isocline is a line at which the slope (here dV

dt ) equals to a
constant k. The isoclines for the set of constants K = {−2, −1, 0, 1, 2} are plotted.

dV

dt
= 1 − V − t (1)

dV

dt
= sin(t) − 1

1.5V (2)

Figure 1: Slope field and isoclines of ODE 1
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Figure 2: Slope field and isoclines of ODE 2
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2 Differential Equations of a Simple Cell Model

The differential equation of the leaky integrate and fire neuron model can be derived
from Kirchhoffs law as shown in equation 3. The external current is known and defined
by equation 4. The expression for the current through the resistor Ir in equation 5 can
simply be derived from Ohm’s law R = V

I . Furthermore, the capacitor’s displacement
current in equation 6 can be derived from the relations I = dQ

dt and Q = C · V .

Iex(t) = Ir(t) + Ic(t) (3)

Iex(t) = Imax · sin(t) (4)

Ir(t) = Vr(t)
Rl

(5)

Ic(t) = Cm · dV

dt
(6)

By plugging the results for the components’ currents in the original formula 3 we get
equation 7 and by rearranging we obtain the final governing differential equation 8. The
exercise asks to include another constant term D to the current part of the differential
equation, which is done in equation 9.

Imax · sin(t) = Vr(t)
Rl

+ Cm · dV

dt
(7)

dV

dt
= 1

Cm

!
Imax · sin(t) − Vr(t)

Rl

"
(8)

dV

dt
= 1

Cm

!
Imax · sin(t) + D − Vr(t)

Rl

"
(9)

Finally, plots of this ordinary differential equation are presented. There are four plots
with the following parameters.

R Cm Imax D Plot
1.3Ω 0.8F 0A 0A A
1.3Ω 0.8F 1A 0A B
1.3Ω 0.8F 0A 2A C
1.3Ω 0.8F 1A 2A D
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Figure 3: Plot A

Figure 4: Plot B
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Figure 5: Plot C

Figure 6: Plot D
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Neuroprosthetics - Exercise 3
Alexander Koenig

30. November 2019

1 Solver Implementation

An initial value problem (IVP) dV
dt = f(V, t) with a given V (t0) = V0 may be solved

numerically using a variety of methods. The following numerical solvers for differential
equations were implemented in Python. Starting from a given initial value V0 the next
value Vn+1 can be calculated using the following formulae.

Explicit Euler Method
Vn+1 = Vn + f(Vn, tn) · ∆t (1)

Heun’s Method

A = f(Vn, tn) (2)
B = f(Vn + A · ∆t, tn+1) (3)

Vn+1 = Vn + A + B

2 · ∆t (4)

Equations of the form dV
dt = A(t)V (t)+B(V, t) may be solved with exponential methods

such as the Exponential Euler Method.

Exponential Euler Method

Vn+1 = VneA(tn)·∆t + B(Vn, tn)
A(tn) (eA(tn)·∆t − 1) (5)
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2 Solve Functions

The initial value problem in equation 6 is solved with the above methods in the interval
t ∈ [−4.5s, 5s] with varying step sizes. It becomes obvious from the plots (figure 1, 2 and
3) that reducing the step size of the respective numerical integration scheme from 1s to
0.012s yields a more accurate result. However, smaller step sizes come at a computational
cost, as more calculations have to be executed. Therefore using an infinitesimal step size
is not computationally feasible.

dV

dt
= 1 − V − t (6)

V (t = −4.5) = V0 = −4

Figure 1: Numerical solution using Explicit Euler
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Figure 2: Numerical solution using Heun

Figure 3: Numerical solution using Exponential Euler
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3 The Leaky Integrate and Fire Neuron

The cell membrane voltage of the Leaky Integrate and Fire (LIF) Neuron can be modeled
with equation 7. In this example, the external current Iex that stimulates the neuron is
either modeled as a constant current (10µA and 20µA) or a rectified sine wave (50Hz
with 10µA and 20µA amplitude). The rectified sine waves are displayed in figure 4.

Vn+1 =

!
"#

"$

Vn + ∆t
Cm

(−gleak (Vn − Vrest) + Iex (tn)) Vn < Vthr

Vspike Vthr ≤ Vn < Vspike

Vrest Vspike ≤ Vn

(7)

with

• Vn: cell membrane voltage

• Cm = 1µF : membrane capacitance

• gleak = 100µS: leak conductivity

• Vrest = −60mV : cell membrane resting voltage

• Vthr = −20mV : cell membrane spiking threshold voltage

• Vspike = 20mV : spiking voltage

The model in equation 7 describes the process of charging and discharging a capacitor
with an input current through a resistor. When a constant current is applied to the
neuron (see figure 5) the cell membrane voltage of the LIF neuron exponentially increases
until a certain threshold voltage is reached. When the threshold is reached the voltage
spikes and an action potential occurs. After the spike, the transmembrane potential
reaches the resting potential and the process is repeated at a constant rate. Notably, the
constant input current is directly proportional to the frequency of charge and discharge
cycles.

For the rectified sine input current the process is very similar in that there is still a
repeated cycle of charge and discharge of the capacitor (see figure 6). The main difference
is that the charging process of the capacitor now follows a different profile. In some cases,
the charge from the capacitor can flow back before the threshold is reached and hence
a curved transmembrane potential can be observed in these time intervals. Further the
rate at which the neuron fires is not constant for the rectified sine input current.
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Figure 4: Input currents
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Figure 5: Membrane voltage with constant input current

6



Figure 6: Membrane voltage with rectified sine input current
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Neuroprosthetics - Exercise 4
Alexander Koenig

4. December 2019

1 Time Constants and Steady-State Values

Derivation of Formulae

The relationship between the voltage dependent rates αx, βx and the time constant τx

(equation 6) and steady state value x∞ (equation 7) with x ∈ {m, n, h} can be derived
from the gating equation in equation 1.

dx

dt
= [αx(1 − x) − βxx] · k (1)

dx

dt
= [αx − αxx − βxx] · k (2)

dx

dt
= [αx − (αx + βx) · x] · k (3)

dx

dt
= ( αx

αx + βx
− x) · (αx + βx) · k (4)

dx

dt
= 1

τx
(x∞ − x) (5)

with

τx = 1
(αx + βx) · k

(6)

x∞ = αx

αx + βx
(7)

and the temperature correction factor

k = 30.1(T −6.3) (8)
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Interpretations of Plots

Figures 1 and 2 show the relationship between the membrane potential and the time
constants τx. The time constants represent the time needed for the gates to approach
their steady state values x∞ at a specific membrane potential. The steady state values
are approached exponentially (see definition of αx and βx in section 2).

When figures 1 and 2 are compared a temperature dependency becomes evident. At
higher temperatures, the time constants τx are shorter for all membrane potentials and
hence the steady-state values x∞ are approached sooner. Vice versa, it takes longer
to approach the steady-state values of the gating variables if the temperature is lower.
This is because the temperature is inversely proportional to the time constant which is
evident from equations 6 and 8.

It is clear that the m gate (sodium activation gate) has the smallest time constants
and hence can approach its steady-state value the fastest. This corresponds to the well-
known fact that sodium channels are very quick to activate and deactivate. It takes
the n gate (potassium activation gate) longer to approach the steady-state value than
the m gate. The h gate (sodium inactivation gate) is the slowest of all gates at resting
potential (V = 0mV ± 15mV). However, for higher or lower membrane potentials the h
gate is faster than the n gate but still slower than the m gate. These observations are
valid for both temperatures.

Figures 3 and 4 show the relationships between the membrane potential and the steady
state values for the gating variables at different temperatures. Since x∞ is not tem-
perature dependent both plots are identical. Note that equations 14 and 15 model the
sodium and potassium channels respectively.

For strongly negative membrane potentials the sodium inactivation gate is fully opened
(Popen ≈ 1) but both sodium and potassium activation gates are closed (Popen ≈ 0).
Hence no sodium or potassium current can flow (refer to equations 14 and 15). At resting
potential (Vrest = 0) the sodium channels are nearly completely closed (m∞ = 0.05 and
h∞ = 0.60) while a few potassium channels are open (n∞ = 0.32). When the cell begins
to depolarize and the membrane potential rises, more sodium and potassium channels
open. The sodium channels open faster than the potassium channels because τm is much
smaller than τn. As observed earlier the sodium inactivation gates are especially slow in
the region of the resting potential and hence the depolarization can continue - an action
potential occurs. When the membrane potential rises further the sodium and potassium
activation gates are fully opened (Popen ≈ 1) whereas the sodium inactivation gate is
fully closed (Popen ≈ 0). As a result, no further inflow of sodium ions is possible, but
potassium ions can still flow out of the cell. The cell repolarizes and both ion channels
start to close. Because the potassium channels close slower than the sodium channels
even more potassium ions can flow out of the cell. The cell enters the hyperpolarization
phase before it recovers back to the resting potential.
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Figure 1: Time constants for temperature 6.3 ◦C

Figure 2: Time constants for temperature 28 ◦C
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Figure 3: Steady state values for temperature 6.3 ◦C

Figure 4: Steady state values for temperature 28 ◦C
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2 Hodgkin-Huxley Neuron Model

By conducting voltage-clamp experiments to investigate the squid giant axon Hodgkin
and Huxley formulated a mathematical model that describes the formation and propaga-
tion of action potentials. The model is governed by four nonlinear differential equations
that represent the electrical characteristics of excitable cells. Equation 9 models the
potential across the cell membrane and equations 10, 11 and 12 describe the behaviour
of the gating variables. All constants and units are used as in the original publication
by Hodgkin and Huxley.

dV

dt
= 1

c
(−iion + istimulus) (9)

dm

dt
= [αm(1 − m) − βmm] k (10)

dn

dt
= [αn(1 − n) − βnn] k (11)

dh

dt
= [αh(1 − h) − βhh] k (12)

with the ion currents

iion = iNa + iK + iL (13)
iNa = ḡNam3h (V − VNa) (14)
iK = ḡKn4 (V − VK) (15)
iL = ḡL (V − VL) (16)

and the rate equations

αm = 2.5 − 0.1V

e(2.5−0.1V ) − 1
(17)

αn = 0.1 − 0.01V

e(1−0.1V ) − 1
(18)

αh = 0.07e−V/20 (19)
βm = 4e−V/18 (20)
βn = 0.125e−V/80 (21)

βh = 1
e(3−0.1V ) + 1

(22)

In this exercise the stimulating current istimulus consists of five 5ms long rectangular
pulses with a gap of 10ms and the amplitudes 1µA, 2µA, 3µA, 4µA, 5µA for 6.3 ◦C
and 2µA, 4µA, 8µA, 16µA, 32µA for 28 ◦C respectively. The stimulating currents are
displayed in figures 5 and 6.
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Difference between Temperatures

Membrane Potential: The amplitude of the spikes in figure 7 is larger than in figure
8 even though the stimulation current is higher. We conclude from this that higher
stimulation currents are needed at higher temperatures to generate an action potential.
This is due to the more rapid opening and closing of ion channels at higher temperatures.
Another observation that relates to this is that each stimulus leads to exactly one action
potential in figure 7 whereas one stimulus can produce multiple spikes in figure 8. Hence
the membrane potential spikes in a more regular pattern for the lower temperature.

Gating Variables: The gating variables tend towards their steady state values (m∞ =
0.05, h∞ = 0.60, n∞ = 0.32) faster at higher temperatures. As a result more action
potentials can be released with one stimulus. At the higher temperature the gates
are also more responsive to the stimuli that do not elicit an action potential (i.e. at
t ∈ {0ms, 5ms}, t ∈ {15ms, 20ms} and t ∈ {30ms, 35ms}).

Ion Currents: The amplitude of the potassium and sodium currents is slightly reduced by
the temperature increase. The current spikes correspond to the action potentials (with
the sodium current rising slightly earlier than the potassium current as the sodium gates
open quicker). The sodium currents are negative (cations flow into the cell) whereas the
potassium currents are positive (cations flow out of the cell).

Generation of an Action Potential

An action potential is a large spike in the membrane potential of a neuron. The gener-
ation of action potentials is best explained by investigating the behavior of the gating
variables for sodium and potassium in figure 9.

A stimulation current of 1 µA and 2 µA slightly rises the membrane potential in the inter-
val t ∈ {0ms, 5ms} and t ∈ {15ms, 20ms} but is not sufficient to overcome the threshold
voltage (see figure 7). However, a stimulus of 3 µA in the interval t ∈ {30ms, 35ms} is
sufficient to overcome this threshold, which activates both sodium and potassium chan-
nels through the m and n gates. But the sodium channels m open much faster than the
potassium channels due to the lower time constant τm. The inflow of positively charged
sodium ions leads to a positive feedback loop and further depolarizes the cell as more
sodium channels are opened. The rapid opening of the sodium activation gates (m gates)
is displayed in figure 9 and the high sodium currents are shown in figure 11.

As the membrane potential increases further the slow potassium gates n open, the potas-
sium outflow increases, and the sodium channels are deactivated as the sodium inactiva-
tion gate h tends towards 0 in figure 9). When the net outflow of potassium ions exceeds
the inflow of sodium ions the membrane potential starts to repolarize back to the resting
potential. Since the potassium channels are slow to close more potassium ions flow out of
the cell and the potential undershoots, which is known as hyperpolarization. The cell’s
membrane potential is restored to the resting potential when the sodium inactivation
gate h returns to its steady-state value. If the membrane potential reaches the threshold
voltage again another action potential can be elicited.
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Amplitude Decrease of Action Potentials at 28 ◦C

This effect can be explained by investigating the gating variables displayed in figure
15. The reason for the amplitude decrease of the action potentials at 28 ◦C is that
the relative refractory period is not yet overcome before a new action potential starts
to form. The slow potassium channels n cannot return to their steady-state value of
approximately 0.32 before the cell depolarizes again. The reduced membrane potential
during hyperpolarization leads to an increase in the necessary current to lift the potential
above the firing threshold again to elicit another action potential. However, since the
stimulation current is constant at 32 µA in the investigated time frame the amplitude
of the resulting action potential decreases.

Interpretation of Phase Plots

Phase plots are an invaluable tool when evaluating dynamical systems as they represent
the directional behavior of a system of differential equations. Phase plots can be used
to analyze the stability of a dynamic system.

The phase plots in figures 13 and 14 display the relationship between the transmem-
brane potential and the ion and leakage currents. The state of the dynamical system is
described by a tuple of voltage and current. The evolution rule describes what future
states can follow from the current state. The trajectories in the plots visualize these
voltage/current tuples that occurred in the time frame of the simulation.

As the membrane potential rises/falls the leakage current increases/decreases on a linear
trajectory for both temperatures. This is also evident from equation 16 as the current
iL linearly depends on V . The behavior of the sodium and potassium trajectories is
more complex. Since the amplitudes of the sodium and potassium currents at 6.3◦C are
almost identical for each action potential the trajectories lie very close together in figure
13. For 28◦C the amplitudes of the sodium and potassium currents are not identical (see
figure 12) and hence the trajectories lie further apart in figure 14. The sharper edges of
the sodium current/voltage trajectory at 6.3◦C are due to the faster opening and closing
of the sodium gates. As sodium currents are negative the sodium trajectories lie in the
bottom half of the plot in both cases (vice versa for the potassium trajectories).

Comparison LIF and HH Model

The simple leaky integrate and fire (LIF) neuron does not model the ion pump and
sets the resting potential by a battery in its equivalence circuit. The LIF model cannot
actively produce action potentials and hence a stimulation current has to be introduced.
The benefits of the LIF model are that it is computationally lightweight and suffices to
model simple questions regarding neuronal behavior.

In comparison, the Hodkin-Huxley (HH) model is a more sophisticated model that is
more biophysically meaningful. It models the ion pump and can produce action poten-
tials. Therefore it is suitable to model more complex neuronal behavior. However, this
comes at a higher computational cost.

7



Figure 5: Stimulation current for temperature 6.3 ◦C

Figure 6: Stimulation current for temperature 28 ◦C
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Figure 7: Membrane potential for temperature 6.3 ◦C

Figure 8: Membrane potential for temperature 28 ◦C
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Figure 9: Gating variables for temperature 6.3 ◦C

Figure 10: Gating variables for temperature 28 ◦C
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Figure 11: Current densities for temperature 6.3 ◦C

Figure 12: Current densities for temperature 28 ◦C
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Figure 13: Phase plot for temperature 6.3 ◦C

Figure 14: Phase plot for temperature 28 ◦C
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Figure 15: Close-up on gating variables for temperature 28 ◦C
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Neuroprosthetics - Exercise 5
Alexander Koenig

21. December 2019

1 Create a Multi-Compartment Model

The code from the previous programming exercise was altered to model the behavior of
a sequence of cells and not just an individual cell. The cable equation and the resulting
system of differential equations are solved numerically with the implicit Euler scheme.
This results in the following linear system. To calculate the membrane potential in each
cell for the next time step the system must be solved for !x.

!
I − ∆t

CmRa
C

"

# $% &
A

· !Vm(t + ∆t)
# $% &

!x

= !Vm(t) + ∆t

Cm

'
−!IHH(t + ∆t) + !Istim(t + ∆t)

(

# $% &
!b

(1)

A · !x = !b (2)

100 ms long simulations are run at a temperature of 6.3◦C and with a time step of 25
µs. The stimulation currents are rectangular 5ms long pulses with an amplitude of 10
µA. Figures 1 and 2 show the formation and propagation of an action potential along
the axon for two different cases. In the first case (figure 1) a pulse stimulates the first
compartment only, whereas in the second case the axon is stimulated simultaneously at
compartment 20 and 80.

It is evident from both plots that the action potential propagates linearly. This is because
the underlying model is a linear system of equations. In figure 2 both action potentials
approach each other and destructively interfere at approximately 55 ms. Therefore in
figure 2 no signal propagates further than approximately 60ms. This is because the
neighboring compartments of the compartment in which the action potentials meet are
still in their absolute refractory period.

The three phases (depolarization, repolarization, hyperpolarization) of the action poten-
tial can be seen in the plots. The blue area describes the membrane at resting potential
(Vrest = 0). Once the cell depolarizes the membrane potential spikes (red color). Immedi-
ately afterward the cell repolarizes (green color) and enters the longer hyperpolarization
phase, which can be seen as a darker fade of blue after the action potential.

1



Figure 1: Potential for first case

Figure 2: Potential for second case
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2 Experiments

The parameters of the model that can be investigated are the membrane capacitance
Cm and the axonal resistance Ra. To explore the effect of these variables only the first
case from above is investigated since the underlying propagation mechanism is the same
in both cases.

Figures 3 and 4 show the effect of increasing and decreasing the parameters with respect
to the base case (Cm = 1µF , Ra = 7.96kΩ). The parameters from the base case are
multiplied with the scalars s ∈ {0.5, 1, 1.3, 2} to produce the four plots in each figure.
The parameters all control the propagation speed of the action potential. A greater
slope in the plot means a higher propagation speed as more compartments are surpassed
in less time.

Effects of Axonal Resistance

The axonal resistance depends on three parameters as shown in equation 3. It is directly
proportional to the electrical resistivity ρ and the length l of the myelinated axon. The
resistance is inversely proportional to the cross-sectional area A of the axon.

Ra = ρ
ℓ

A
(3)

Figure 3 shows that decreasing the axonal resistance Ra leads to a higher propagation
speed. This can be explained with Ohm’s law in equation 4. If the resistance decreases
at a constant potential the current through the axon must increase. Hence with a higher
conductance more current (i.e charges per second) can pass through the axon. Therefore
the potential in the adjacent compartment can rise above the firing threshold sooner and
the action potential can travel faster. Vice versa increasing the axonal resistance leads
to slower signal propagation.

R = V

I
(4)

If the axonal resistance rises above a certain threshold the action potential cannot prop-
agate any further. This is shown in the fourth plot in figure 3. Not enough charge can
flow through the axon at once to lift the membrane potential in the adjacent cell above
the firing threshold to elicit another action potential.

Effects of Capacitance

Figure 4 demonstrates that the membrane capacitance has a similar effect on the prop-
agation speed as the axonal resistance: reducing the membrane capacitance increases
propagation speed and vice versa. Capacitance is reduced by increasing the effective
thickness of the membrane, which results in a bigger separation of ions between intra-
cellular and extracellular fluid. Through smaller capacitance, less charged particles are

3



stored on both sides of the membrane. Thus it is easier to change the membrane poten-
tial which allows sodium ions to move more freely along the axon. This results in faster
conduction.

Again, it can be observed that if the membrane capacitance rises above a certain thresh-
old the action potential can not propagate further than a few compartments. This is
because the membrane capacitance is so high that the stimulating potential from the
previous cell is not high enough to induce an ion flow across the membrane, which is
needed to form another action potential.
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Figure 3: Potential for different resistances
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Figure 4: Potential for different capacities
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Neuroprosthetics - Exercise 6
Alexander Koenig

21. December 2019

1 Calculate the Potential Field

The potential resulting from a current point source is calculated with equation 1. The
potential is directly proportional to the current. A visualization of the potential field
for a 50µm by 50µm slice at a distance of 10µm is displayed in figure 1. The current is
I = 1mA and the electrical conductivity of the medium is ρ = 300Ωcm.

Φ = ρ

4π
· I

r
(1)

Figure 1: Potential from current source
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Figure 2 shows the potential field, the electric field and the activation function in a
50µm piece of axon positioned 10µm from the current point source. The three graphs
are plotted for an electrode current of 1mA and −1mA.

From the first two graphs, it becomes clear that the external potential at the axon is
positive if the current source is positive (direct proportionality). The potential follows
a non-linear profile and reaches its maximum/minimum at the point where the current
source is closest to the axon, at 25µm.

The electric field is defined as the negative first spatial derivative of the potential (in
absence of a magnetic potential). Hence the electric field follows the displayed trajectory,
with two peaks/throughs where the change of the potential is smallest/greatest. The
electric field is zero at the point where the potential reaches its maximum/minimum.

The activation function is calculated as the second derivative of the external potential.
It is evident from the plot that the activation functions for both currents have their
maximum/minimum at the point where the potential reaches its minimum/maximum.
The activation function describes the activation of the neuron due to an external poten-
tial.

2 Calculate a Neuron Model

The model from exercise 5 is enhanced to model the influence of an external potential on
the axon. The axon is positioned as in section 1 and simulations are run with different
stimulation sequences. The phase duration of all pulses is 1ms.

• Figure 3 shows that the current pulse is too weak to elicit an action potential. The
positive activation only lifts the membrane potential to approximately 1.6mV and
does not reach the firing threshold. The compartments around the peak experience
a negative activation and hence show a darker shade of blue in the plot. There is
a small undershoot of the membrane potential after the current pulse due to the
slow closing of the potassium channels.

• Figure 4 shows the clear formation of an action potential. The current pulse of
-1mA results in a strong enough neuronal activation to lift the membrane potential
above the firing threshold. The signal then propagates linearly in both directions,
like in the previous exercise.

• Figure 5 shows a similar situation as in figure 3. The first phase of the bi-phasic
current pulse can not lift the membrane potential above the threshold and no
action potential can form. The simulation differs from the simulation in figure 3
in that the rise of the membrane potential is much shorter as the second phase of
the pulse immediately reduces the membrane potential with its negative activation
(positive potential leads to negative activation in the middle compartments of the
axon).
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• Figure 6 shows that the formation of an action potential is possible using a bi-
phasic current pulse if the first pulse is strong enough.

• Figure 7 shows that a positive current pulse reduces the membrane potential in
the middle compartments due to its negative activation. The membrane potential
in the outer compartments rises, but at approximately 0.3mV it is far from the
firing threshold. No action potentials can be elicited.

• Figure 8 demonstrates that if a positive current pulse is strong enough multiple
action potentials can be elicited. Approximately at compartments 20 and 80, the
membrane potential is lifted above the firing threshold by the positive parts of
the activation function. Two action potentials form from these two points and
a third one is elicited in the middle compartments at roughly 15ms. The outer
action potentials travel towards the inner one and destructively interfere because
the neighboring compartments of the compartment in which the action potentials
meet are still in their absolute refractory period.
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Figure 2: Potential, electric field and activation function for different currents
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Figure 3: Stimulation type: mono-phasic, Current: -0.25mA

Figure 4: Stimulation type: mono-phasic, Current: -1mA
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Figure 5: Stimulation type: bi-phasic, Current amplitude: 0.5mA

Figure 6: Stimulation type: bi-phasic, Current amplitude: 2mA
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Figure 7: Stimulation type: mono-phasic, Current: 0.25mA

Figure 8: Stimulation type: mono-phasic, Current: 5mA
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Neuroprosthetics - Exercise 7
Alexander Koenig

26. January 2019

1 Border Frequencies of a Filter

The simplified Cochlear Implant (CI) consists of n ∈ {3, 6, 12, 22} electrodes and uses a
bandpass filter for each electrode on the array. The border frequencies of each electrode
are logarithmically distributed between an overall range of 100Hz for the most apical
electrode to 8 kHz for the most basal electrode. Below is a list of the border frequen-
cies (in Hz) for each electrode array. Figure 1 shows a logarithmic plot of the border
frequencies of a cochlear implant with 22 electrodes.

• n = 3: [ 100. 431. 1857. 8000.]

• n = 6: [ 100. 208. 431. 894. 1857. 3854. 8000.]

• n = 12: [ 100. 144. 208. 299. 431. 621. 894. 1289. 1857. 2675. 3854. 5553.
8000.]

• n = 22: [ 100. 122. 149. 182. 222. 271. 330. 403. 492. 601. 733. 894. 1092.
1332. 1626. 1984. 2421. 2955. 3606. 4401. 5371. 6555. 8000.]

Figure 1: Border frequencies of CI with 22 electrodes
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2 Implement a Filter Bank

A second-order bandpass filter bank was implemented for the cochlear implants with
the above border frequencies using the Butterworth bandpass filter. Butterworth filters
feature a cutoff frequency of −3.01dB at the border frequencies and a maximally flat
filter response in the passband. When viewed on a logarithmic plot the response rolls off
linearly towards negative infinity at a rate of −12dB per octave for second-order filters.
Figure 2 and 3 show the frequency response of the filter bank for 3 and 22 electrodes
respectively.

The phrase "Koenig’s Test Word" was recorded with a microphone and filtered with the
filter banks. The time signal of each filter channel of a 12-electrode CI is plotted in figure
4. The blue lines represent the original sample, whereas the orange plot represents the
sound at the electrode. By investigating the plotted results and by listening to each filter
channel it becomes evident that some electrodes can represent specific spoken letters.
For example, electrodes 1 to 4 mainly catch the lower sound of the "oe" in "Koenig’s Test
Word". The highly pitched "s" sounds in the words are captured by electrode 12. Here
three distinct peaks in the signal at both "s" sounds and at the "t" can be identified.
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Figure 2: Frequency response for 3-electrode filter bank

Figure 3: Frequency response for 22-electrode filter bank
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Figure 4: Amplitude at each electrode
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3 Join the Channels

In this section, the individual signals at each electrode are summed back together in
order to compare them to the original signal. For reference figures 5, 6 and 7 show the
amplitude, spectrum and spectrogram of the original signal, respectively. Figures 8, 9
and 10 display the same data for each CI, but this time reconstructed from the electrode
array of the cochlear implant. When one listens to the summed output of the electrode
array the signal can almost not be distinguished from the original sound, even for the
CI with 3 electrodes.

The similarity of the signals can also be seen from the spectrograms - they are almost
identical for each CI. The reason for this is that the whole audible spectrum is covered
by the filters. In the spectrogram, one can observe each of the three words ("Koenig’s",
"Test", "Word") as a distinct area.

From figure 9 it becomes clear that the higher the number of electrodes, the more power
is lost. This may be due to the fact that there are more border areas which are attenuated
by -3dB. This effect can also be observed in the amplitude plots in figure 8 where the
amplitude of the signals decreases the more electrodes there are.

Figure 5: Amplitude of original signal
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Figure 6: Power spectrum of original signal

Figure 7: Spectrogram of original signal
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Figure 8: Amplitude of the summed signals for each CI
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Figure 9: Power spectra of the summed signals for each CI
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Figure 10: Spectrograms of the summed signals for each CI
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Neuroprosthetics - Exercise 8
Alexander Koenig

31. January 2019

1 Noise Vocoder with Dynamic Compression

In this exercise, a noise vocoder with dynamic compression is implemented to model
the sound impressions a patient using a cochlear implant (CI) is hearing. In order
for this to work white noise with a Gaussian distribution (mean 0, standard deviation
1) is filtered with the filter banks from exercise 7. The filtered noise is then modulated
with the envelopes of a filtered speech signal. The envelopes are generated with a Hilbert
transform. The envelopes for a CI with 12 electrodes are displayed in figure 1. The same
word ("Koenig’s Test Word") as in the previous exercise is used in this exercise.

Figure 1: Envelopes for 12 electrode-CI
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In the next step dynamic compression according to equation 1 is applied to the envelopes.
The variable c is the compression rate, which is set to 500. After the compression, all
values above a threshold of 1 are clipped to a value of 1 and all values below a custom
threshold are clipped to 0. Figure 2 shows the processed envelopes with a lower threshold
of 0.2. It is obvious that the higher threshold of 1 is never reached, but all amplitudes
below 0.2 are clipped to 0.

envcompressed = log10(1 + c · env)
log10(c + 1) (1)

Figure 2: Compressed and filtered envelopes for 12 electrode-CI

In the next step, the processed envelopes are modulated with the noise to model the
signal that the patient will hear. After this, the signals at each electrode of the CI are
summed back together to get an overall acoustic impression. Figures 3, 4 and 5 show
the amplitudes, the spectra and the spectrograms of the original and the reconstructed
signal for a 12-electrode CI, respectively.

Figure 3 demonstrates that the reconstruction process with the introduced noise "smudges"
out the signal. The peaks are less distinct, making the signal less intelligible. Also, the
amplitude of the signal is increased. Figure 4 shows that the induced noise is also visible
in the power spectrum. Almost all frequencies have a power greater than zero - which
comes from the white noise generated in the beginning. Finally, figure 5 shows that the
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words (three dark red areas in the top figure) are less distinct in the noisy reconstruction.
Further, some parts of the signal do not appear in the spectrogram at all because the
amplitude of the compressed envelope was below the clipping threshold.

When listening to the summed up signals, which represent the signal the patient hears, it
becomes clear that the more electrodes the CI has, the better the reconstruction quality
becomes. While the signal for 3 electrodes is almost not understandable and purely
noise, the word reconstructed by a 22-electrode CI can be understood well. Increasing
the threshold from 0.2 to higher values removes more parts of the signal and hence
reduces the comprehensibility of the word. At lower compression rates the signal seemed
to be better intelligible than for higher ones. Higher-order (e.g. order 8) bandpass filters
only produced loud noises and no good reconstruction. Using lower order (e.g. order 2)
filters seems to produce lower quality results.
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Figure 3: Amplitudes of original and reconstructed signals
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Figure 4: Spectra of original and reconstructed signals
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Figure 5: Spectrograms of original and reconstructed signals
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